Solitons: Mathematical Methods for Physicists: Springer Series in Solid-State Sciences, cartea 19
Autor G. Eilenbergeren Limba Engleză Paperback – 1981
Din seria Springer Series in Solid-State Sciences
- 18% Preț: 1225.94 lei
- Preț: 642.45 lei
- 18% Preț: 1017.62 lei
- 15% Preț: 532.05 lei
- Preț: 541.46 lei
- 18% Preț: 962.35 lei
- Preț: 385.84 lei
- 18% Preț: 1827.48 lei
- 15% Preț: 661.02 lei
- Preț: 389.88 lei
- 15% Preț: 639.59 lei
- 15% Preț: 635.15 lei
- 18% Preț: 896.21 lei
- 15% Preț: 647.92 lei
- 15% Preț: 651.34 lei
- 18% Preț: 890.23 lei
- 15% Preț: 640.55 lei
- 15% Preț: 649.54 lei
- 15% Preț: 645.60 lei
- 15% Preț: 644.30 lei
- 15% Preț: 653.79 lei
- 18% Preț: 956.69 lei
- 15% Preț: 637.59 lei
- 23% Preț: 1043.41 lei
- 15% Preț: 639.08 lei
- 15% Preț: 648.24 lei
- 15% Preț: 637.46 lei
- 15% Preț: 640.06 lei
- Preț: 391.40 lei
- Preț: 390.84 lei
- 15% Preț: 638.57 lei
- 18% Preț: 1006.06 lei
- 18% Preț: 730.79 lei
- 15% Preț: 640.37 lei
- 15% Preț: 643.65 lei
- 18% Preț: 1231.01 lei
- 18% Preț: 950.21 lei
- 15% Preț: 642.68 lei
- 15% Preț: 640.55 lei
- 18% Preț: 1229.10 lei
Preț: 635.80 lei
Preț vechi: 748.00 lei
-15% Nou
Puncte Express: 954
Preț estimativ în valută:
121.68€ • 125.96$ • 102.84£
121.68€ • 125.96$ • 102.84£
Carte tipărită la comandă
Livrare economică 06-20 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540102236
ISBN-10: 354010223X
Pagini: 204
Ilustrații: VIII, 194 p. 6 illus.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.29 kg
Ediția:Softcover reprint of the original 1st ed. 1981
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Solid-State Sciences
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 354010223X
Pagini: 204
Ilustrații: VIII, 194 p. 6 illus.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.29 kg
Ediția:Softcover reprint of the original 1st ed. 1981
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Solid-State Sciences
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Introduction.- 1.1 Why Study Solitons?.- 1.2 Basic Concepts Illustrated by Simple Examples.- 2. The Korteweg-de Vries Equation (KdV-Equation).- 2.1 The Physical Meaning of the KdV Equation.- 2.2 The KdV Equation as a Lagrangian Field Theory: Symmetries.- 2.3 Local Conservation Laws for the KdV System.- 2.4 Simple Solutions of the KdV Equation.- 3. The Inverse Scattering Transformation (IST) as Illustrated with the KdV.- 3.1 The Linear Eigenvalue Problem.- 3.2 Commutation Relations for (KdV)n.- 3.3 Inverse Scattering Theory of Gel'fand-Levitan-Marchenko.- 3.4 Application to the KdV Equation: N Soliton Solution.- 3.5 Squared-Function Systems, or: the Secret of the KdV Equation.- 3.6 Dynamics of the Scattering Data.- 3.7 Birth and Death of Solitons.- 4. Inverse Scattering Theory for Other Evolution Equations.- 4.1 Statement of the Problem.- 4.2 Inverse Scattering Theory for Equation (4.1.1).- 4.3 Orthogonal Systems of Functions, Associated Operators, and Induced Poisson Brackets.- 4.4 Further Nonlinear Evolution Equations.- 4.5 The Simplest Nonpolynomial “Dispersion Relations”.- 4.6 Time Development of the Scattering Data.- 4.7 Transformation Theory: Miura and Bäcklund Transformations.- 4.8 Perturbation Theory and Stability.- 4.9 Summary of Results, Problems, and Simple Extension to Higher Dimensions.- 5. The Classical Sine-Gordon Equation (SGE).- 5.1 Basic Equations.- 5.2 Soliton Solutions of the SGE.- 5.3 Simple Solutions of the PSG.- 5.4 Cauchy Problem for the PSG and Particle Representation.- 5.5 PSG Solitons in the Presence of External Perturbations.- 5.6 Possible Generalizations.- 6. Statistical Mechanics of the Sine-Gordon System.- 6.1 Functional Integrals.- 6.2 Partition Function in the Soliton Picture.- 6.3 Partition Function by a Scale Transformation.- 7.Difference Equations: The Toda Lattice.- 7.1 Basic Considerations.- 7.2 IST for the Toda Lattice.- 7.3 Systems of Squared Functions.- 7.4 Soliton Solutions for the Toda Lattice.- References.