Some Notes on Game Bounds
Autor Jorge-Nuno O. Silvaen Limba Engleză Paperback – 30 apr 1998
Combinatorial Games are a generalization of real numbers. Each game has a recursively defined complexity (birthday). In this paper we establish some game bounds. We find some limit cases for how big and how small a game can be, based on its complexity. For each finite birthday, N, we find the smallest positive number and the greatest game born by day N, as well as the smallest and the largest positive infinitesimals. As for each particular birthday we provide the extreme values for those types of games, these results extend those in 1, page 214]. The main references in the theory of combinatorial games are ONAG 1] and WW 2]. We'll use the notation and some fundamental results from WW---mainly from its first six chapters---to establish some bounds to the size of the games.
Preț: 146.21 lei
Nou
27.98€ • 28.84$ • 23.63£
Carte tipărită la comandă
Livrare economică 01-15 martie
Specificații
ISBN-10: 1581120214
Pagini: 108
Dimensiuni: 141 x 217 x 9 mm
Greutate: 0.15 kg
Editura: Dissertation.Com.
Locul publicării:United States