Cantitate/Preț
Produs

Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian

Autor Hajime Urakawa
en Limba Engleză Hardback – 30 oct 2016
The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz–Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne–Polya–Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdier, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.
Citește tot Restrânge

Preț: 67784 lei

Preț vechi: 79745 lei
-15% Nou

Puncte Express: 1017

Preț estimativ în valută:
12977 13489$ 10759£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789813109087
ISBN-10: 9813109084
Pagini: 350
Dimensiuni: 159 x 235 x 23 mm
Greutate: 0.59 kg
Editura: World Scientific Publishing Company