Cantitate/Preț
Produs

Spectral Measures and Dynamics: Typical Behaviors: Latin American Mathematics Series

Autor Moacir Aloisio, Silas L. Carvalho, César R. de Oliveira
en Limba Engleză Hardback – 28 oct 2023
This book convenes and deepens generic results about spectral measures, many of them available so far in scattered literature. It starts with classic topics such as Wiener lemma, Strichartz inequality, and the basics of fractal dimensions of measures, progressing to more advanced material, some of them developed by the own authors.

A fundamental concept to the mathematical theory of quantum mechanics, the spectral measure relates to the components of the quantum state concerning the energy levels of the Hamiltonian operator and, on the other hand, to the dynamics of such state. However, these correspondences are not immediate, with many nuances and subtleties discovered in recent years.

A valuable example of such subtleties is found in the so-called “Wonderland theorem” first published by B. Simon in 1995. It shows that, for some metric space of self-adjoint operators, the set of operators whose spectral measures are singularcontinuous is a generic set (which, for some, is exotic). Recent works have revealed that, on top of singular continuity, there are other generic properties of spectral measures. These properties are usually associated with a number of different notions of generalized dimensions, upper and lower dimensions, with dynamical implications in quantum mechanics, ergodicity of dynamical systems, and evolution semigroups. All this opens ways to new and instigating avenues of research.

Graduate students with a specific interest in the spectral properties of spectral measure are the primary target audience for this work, while researchers benefit from a selection of important results, many of them presented in the book format for the first time.

Citește tot Restrânge

Din seria Latin American Mathematics Series

Preț: 77217 lei

Preț vechi: 94167 lei
-18% Nou

Puncte Express: 1158

Preț estimativ în valută:
14782 15203$ 12263£

Carte tipărită la comandă

Livrare economică 17 februarie-03 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031382888
ISBN-10: 3031382889
Pagini: 246
Ilustrații: XI, 246 p. 1 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.54 kg
Ediția:1st ed. 2023
Editura: Springer International Publishing
Colecția Springer
Seriile Latin American Mathematics Series, Latin American Mathematics Series – UFSCar subseries

Locul publicării:Cham, Switzerland

Cuprins

Spectrum and Dynamics: Some Basic Concepts.- Part I Quantum Models: Correlation Dimension.- Fractal Measures and Dynamics.- Escaping Probabilities and Quasiballistic Dynamics.- Generalized Dimensions and Dynamics.- Part II Ergodic Theory and Semigroups: Generic Scales of Weak-Mixing.- Asymptotics of C0-Semigroups.- Generic Stability for Self-adjoint Semigroups.- References.

Notă biografică

Moacir Aloisio is an Adjunct Professor at the Math department of the Federal University of Jequitinhonha and Mucuri Valleys, Brazil. He earned his PhD in mathematics from the Federal University of Minas Gerais, Brazil, in 2019. His research interests lie in Operator Theory, Mathematical Physics, and Dynamical Systems. Some allied areas include Schrödinger and Dirac operators, quantum (in)stability, dynamic localization, abstract differential equations and operator algebras.

Silas L. Carvalho has earned his PhD in Physics at the University of São Paulo, Brazil, in 2010. From 2011 to 2013, he was an Adjunct Professor at the Federal University of São Paulo. Since then, Dr. Carvalho has been serving as an Adjunct Professor at the Math department of the Federal University of Minas Gerais. He develops research in Mathematical Physics, Ergodic Theory and Dynamical Systems, mainly in problems that involve fractal dimensions and measures. Some allied areas include Schrödinger and Dirac operators, quantum dynamics, and stability problems involving $C_0$-semigroups.

César R. de Oliveira is a Full Professor at the Math department of the Federal University of São Carlos, Brazil. His field of research is Mathematical Physics; more specifically, spectral theory of Schrödinger operators, the Aharonov-Bohm effect, and effective operators in systems with reduction of dimensions. He has spent extended research visits at the University of British Columbia, Canada, and Milan University, Italy. Dr. Oliveira has authored three books, including “Intermediate Spectral Theory and Quantum Dynamics” (Birkhäuser, 2009, ISBN 978-3-7643-8794-5).


Textul de pe ultima copertă

This book convenes and deepens generic results about spectral measures, many of them available so far in scattered literature. It starts with classic topics such as Wiener lemma, Strichartz inequality, and the basics of fractal dimensions of measures, progressing to more advanced material, some of them developed by the own authors.

A fundamental concept to the mathematical theory of quantum mechanics, the spectral measure relates to the components of the quantum state concerning the energy levels of the Hamiltonian operator and, on the other hand, to the dynamics of such state. However, these correspondences are not immediate, with many nuances and subtleties discovered in recent years.

A valuable example of such subtleties is found in the so-called “Wonderland theorem” first published by B. Simon in 1995. It shows that, for some metric space of self-adjoint operators, the set of operators whose spectral measures are singular continuous is ageneric set (which, for some, is exotic). Recent works have revealed that, on top of singular continuity, there are other generic properties of spectral measures. These properties are usually associated with a number of different notions of generalized dimensions, upper and lower dimensions, with dynamical implications in quantum mechanics, ergodicity of dynamical systems, and evolution semigroups. All this opens ways to new and instigating avenues of research.

Graduate students with a specific interest in the spectral properties of spectral measure are the primary target audience for this work, while researchers benefit from a selection of important results, many of them presented in the book format for the first time.


Caracteristici

Gathers generic results of spectral measures of importance to the mathematical theory of quantum mechanics Starts with classical topics, progressing to advanced material developed by the authors Of special interest to graduate students seeking new avenues of research within the field