Spectral Theory: Topics in Mathematical Physics, cartea 3
Autor M. Sh. Birmanen Limba Engleză Paperback – 8 oct 2012
Preț: 380.84 lei
Nou
Puncte Express: 571
Preț estimativ în valută:
72.88€ • 75.30$ • 60.62£
72.88€ • 75.30$ • 60.62£
Carte tipărită la comandă
Livrare economică 20 martie-03 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781468475913
ISBN-10: 1468475916
Pagini: 100
Ilustrații: VI, 93 p.
Dimensiuni: 210 x 279 x 5 mm
Greutate: 0.25 kg
Ediția:1969
Editura: Springer Us
Colecția Springer
Seria Topics in Mathematical Physics
Locul publicării:New York, NY, United States
ISBN-10: 1468475916
Pagini: 100
Ilustrații: VI, 93 p.
Dimensiuni: 210 x 279 x 5 mm
Greutate: 0.25 kg
Ediția:1969
Editura: Springer Us
Colecția Springer
Seria Topics in Mathematical Physics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
The Asymptotic Behavior of the Solutions of the Wave Equation Concentrated near the Axis of a Two-Dimensional Waveguide in an Inhomogeneous Medium.- §1. A Waveguide in an Inhomogeneous Medium.- §2. The Construction of the Solutions of the Wave Equation Concentrated near the Waveguide Axis.- §3. The Asymptotic Behavior of the Eigenfunctions and Eigenvalues of the Boundary Problem for the Waveguide.- Literature Cited.- Perturbations of the Spectrum of the Schroedinger Operator with a Complex Periodic Potential.- §1. Preliminary Information.- §2. Investigations of the Perturbed Operator.- §3. Investigation of the Spectrum under the Condition $$\int{\left| \text{q}\left( \text{x} \right) \right|}{{\text{e}}^{\text{ }\!\!\delta\!\!\text{ }\left| x \right|}}dx$$ < ?.- §4. Proof That There Are No Eigenvalues on the Continuous Spectrum.- Literature Cited.- The Discrete Spectra of the Dirac and Pauli Operators.- §1. Auxiliary Information.- §2. The Discrete Spectrum of the Dirac Operator in the Case of Spherical Symmetry.- §3. The Discrete Spectrum of the Dirac Operator in the Three-Dimensional Case.- §4. The Discrete Spectrum of the Pauli Operator.- Literature Cited.- The Nonself-Adjoint Schroedinger Operator. III.- §1. Auxiliary Information.- §2. The Operator with Potential q(x) ? S?.- §3. The Operator with Potential q(x) ? Sn, n < ?.- Literature Cited.- The Singular Numbers of the Sum of Completely Continuous Operators.- Literature Cited.- Double-Integral Operators in the Ring R^.- Literature Cited.- Correction to “The Inverse Problem in the Theory of Seismic Wave Propagation”.