Spektraltheorie selbstadjungierter Operatoren im Hilbertraum und elliptischer Differentialoperatoren
Autor Friedrich Sauvignyde Limba Germană Paperback – 31 oct 2018
Wir konstruieren die Spektralschar durch eine technisch aufwändige Approximation, wobei die Stieltjes-Umkehrformel im Zentrum des Beweises steht. Ein Ergebnis hiervon ist, dass selbstadjungierte Operatoren nicht nur ein diskretes, sondern auch ein kontinuierliches Spektrum besitzen. Die auftretenden Streueigenwerte können hierbei nicht durch Variationsmethoden gewonnen werden.
Dann wenden wir uns der zentralen Frage zu, welche elliptischen Differentialoperatoren eine selbstadjungierte Fortsetzung besitzen und somit im Geltungsbereich des Spektralsatzes liegen. Hier unterscheiden wir zwischen stabilen elliptischen Differentialoperatoren auf beschränkten Gebieten und denen auf dem ganzen Raum, wie etwa dem Schrödingeroperator. Auch Laplace-Beltrami-Operatoren und der Schwarzsche Operator für Minimalflächen werden im obigen Sinne als selbstadjungiert erkannt. Am Ende dieses Buches geben wir eine Einführung in die Störungstheorie selbstadjungierter Operatoren. Hier weisen wir die analytische Abhängigkeit der Spektralschar vom Störungsparameter nach.
Dieses Werk zur Spektraltheorie ist insbesondere für das fortgeschrittene Mathematik- und Physikstudium geeignet, Kenntnisse in der Funktionalanalysis und der Theorie elliptischer Differentialgleichungen werden vorausgesetzt.
Preț: 177.07 lei
Nou
Puncte Express: 266
Preț estimativ în valută:
33.89€ • 35.32$ • 28.21£
33.89€ • 35.32$ • 28.21£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662580684
ISBN-10: 3662580683
Pagini: 274
Ilustrații: XII, 260 S.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.39 kg
Ediția:1. Aufl. 2019
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3662580683
Pagini: 274
Ilustrații: XII, 260 S.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.39 kg
Ediția:1. Aufl. 2019
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany
Cuprins
Abgeschlossene Operatoren mit ihren Graphen.- Stabile elliptische Differentialoperatoren auf beschränkten Gebieten.- Ausschöpfung des Hilbertraums durch Niveauräume des Differentialoperators.- Über die Selbstadjungiertheit von Hermiteschen Operatoren.- Die Resolvente eines selbstadjungierten Operators.- Die Spektralschar mit ihrem Riemann-Stieltjes-Integral.- Lebesgue-Stieltjes-Integrale bezüglich der Spektralschar.- Unbeschränkte Spektraloperatoren.-Auswahl- und Konvergenzsatz von E. Helly.- Cauchy-Stieltjes-Integrale und die Stieltjes-Umkehrformel.- Approximation der Spektralschar selbstadjungierter Operatoren.- Der Spektralsatz selbstadjungierter Operatoren und ihr Spektrum.- Die Cayley-Transformierten abgeschlossener Hermitescher Operatoren.- Der Spektralsatz für unitäre Operatoren.- Die zeitabhängige Schrödingergleichung.- Die Friedrichs-Fortsetzung halbbeschränkter Hermitescher Operatoren.- Der Vergleich von Rellichoperatoren mit ihren Spektren.- Positive Laplace-Beltrami-Operatoren auf beliebigen Gebieten.- Der Operator von H.A. Schwarz für Minimalfächen.- Spektraltheorie von Schrödingeroperatoren mit halbbeschränktem Potential.- Die wesentliche Selbstadjungiertheit von Schrödingeroperatoren.- Spektraltheorie der Integraloperatoren.- Der Spektralsatz für kompakte Operatoren.- Die Integralformel von Herglotz und ihre Folgerungen.- Einführung in die Störungstheorie selbstadjungierter Operatoren.- Ein analytischer Störungssatz für die Spektralschar.
Notă biografică
F. Sauvigny forscht an der BTU Cottbus-Senftenberg über Geometrische Analysis und hat verschiedene Lehrbücher verfasst.
Textul de pe ultima copertă
In diesem Lehrbuch wird der Spektralsatz für selbstadjungierte Operatoren aus dem Resultat der Linearen Algebra über die Diagonalisierung Hermitescher Matrizen hergeleitet. Dabei werden Lebesgue-Stieltjes-Integrale verwendet und der Auswahl- sowie der Konvergenzsatz von Helly über monotone Funktionen bereitgestellt.
Wir konstruieren die Spektralschar durch eine technische aufwändige Approximation, wobei die Stieltjes-Umkehrformel im Zentrum des Beweises steht. Ein Ergebnis hiervon ist, dass selbstadjungierte Operatoren nicht nur ein diskretes, sondern auch ein kontinuierliches Spektrum besitzen. Die auftretenden Streueigenwerte können hierbei nicht durch Variationsmethoden gewonnen werden.
Dann wenden wir uns der zentralen Frage zu, welche elliptischen Differentialoperatoren eine selbstadjungierte Fortsetzung besitzen und somit im Geltungsbereich des Spektralsatzes liegen. Hier unterscheiden wir zwischen stabilen elliptischen Differentialoperatoren auf beschränkten Gebieten und denen auf dem ganzen Raum, wie etwa dem Schrödingeroperator. Auch Laplace-Beltrami-Operatoren und der Schwarzsche Operator für Minimalflächen werden im obigen Sinne als selbstadjungiert erkannt. Am Ende dieses Buches geben wir eine Einführung in die Störungstheorie selbstadjungierter Operatoren. Hier weisen wir die analytische Abhängigkeit der Spektralschar vom Störungsparameter nach.
Dieses Werk zur Spektraltheorie ist insbesondere für das fortgeschrittene Mathematik- und Physikstudium geeignet, Kenntnisse in der Funktionalanalysis und der Theorie elliptischer Differentialgleichungen werden vorausgesetzt.
Der Autor
F. Sauvigny forscht an der BTU Cottbus-Senftenberg über Geometrische Analysis und hat verschiedene Lehrbücher verfasst, die auch als Grundlage für dieses Buch dienen können.
Wir konstruieren die Spektralschar durch eine technische aufwändige Approximation, wobei die Stieltjes-Umkehrformel im Zentrum des Beweises steht. Ein Ergebnis hiervon ist, dass selbstadjungierte Operatoren nicht nur ein diskretes, sondern auch ein kontinuierliches Spektrum besitzen. Die auftretenden Streueigenwerte können hierbei nicht durch Variationsmethoden gewonnen werden.
Dann wenden wir uns der zentralen Frage zu, welche elliptischen Differentialoperatoren eine selbstadjungierte Fortsetzung besitzen und somit im Geltungsbereich des Spektralsatzes liegen. Hier unterscheiden wir zwischen stabilen elliptischen Differentialoperatoren auf beschränkten Gebieten und denen auf dem ganzen Raum, wie etwa dem Schrödingeroperator. Auch Laplace-Beltrami-Operatoren und der Schwarzsche Operator für Minimalflächen werden im obigen Sinne als selbstadjungiert erkannt. Am Ende dieses Buches geben wir eine Einführung in die Störungstheorie selbstadjungierter Operatoren. Hier weisen wir die analytische Abhängigkeit der Spektralschar vom Störungsparameter nach.
Dieses Werk zur Spektraltheorie ist insbesondere für das fortgeschrittene Mathematik- und Physikstudium geeignet, Kenntnisse in der Funktionalanalysis und der Theorie elliptischer Differentialgleichungen werden vorausgesetzt.
Der Autor
F. Sauvigny forscht an der BTU Cottbus-Senftenberg über Geometrische Analysis und hat verschiedene Lehrbücher verfasst, die auch als Grundlage für dieses Buch dienen können.
Caracteristici
Leitet den Spektralsatz für bestimmte Klassen von Operatoren her Stellt bisher wenig bekannte Resultate dar und bietet neue Ansätze in der Spektraltheorie Führt in die Störungstheorie ein