Cantitate/Preț
Produs

Spline Functions: Basic Theory: Cambridge Mathematical Library

Autor Larry Schumaker
en Limba Engleză Paperback – 15 aug 2007
This classic work continues to offer a comprehensive treatment of the theory of univariate and tensor-product splines. It will be of interest to researchers and students working in applied analysis, numerical analysis, computer science, and engineering. The material covered provides the reader with the necessary tools for understanding the many applications of splines in such diverse areas as approximation theory, computer-aided geometric design, curve and surface design and fitting, image processing, numerical solution of differential equations, and increasingly in business and the biosciences. This new edition includes a supplement outlining some of the major advances in the theory since 1981, and some 250 new references. It can be used as the main or supplementary text for courses in splines, approximation theory or numerical analysis.
Citește tot Restrânge

Din seria Cambridge Mathematical Library

Preț: 56661 lei

Preț vechi: 63665 lei
-11% Nou

Puncte Express: 850

Preț estimativ în valută:
10844 11264$ 9007£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521705127
ISBN-10: 0521705126
Pagini: 600
Ilustrații: 40 figures
Dimensiuni: 152 x 229 x 31 mm
Greutate: 0.85 kg
Ediția:3 Rev ed.
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Mathematical Library

Locul publicării:Cambridge, United Kingdom

Cuprins

1. Introduction; 2. Preliminaries; 3. Polynomials; 4. Polynomial splines; 5. Computational methods; 6. Approximation power of splines; 7. Approximation power of splines (free knots); 8. Other spaces of polynomial splines; 9. Tchebycheffian splines; 10. L-Splines; 11. Generalized splines; 12. Tensor-product splines; 13. Some multidimensional tools; Supplement; References; New references; Index.

Recenzii

'… highly useful …' Zentralblatt MATH

Notă biografică


Descriere

A reference/advanced text on part of applied analysis with applications in numerical analysis and computer-aided geometric design.