Springer Handbook of Electrochemical Energy: Springer Handbooks
Editat de Cornelia Breitkopf, Karen Swider-Lyonsen Limba Engleză Hardback – 15 noi 2016
Organized in six parts, the overall complexity of electrochemistry is presented and makes this handbook an authoritative reference and definitive source for advanced students, professionals and scientists particularly interested in industrial and energy applications.
Din seria Springer Handbooks
- 18% Preț: 1877.87 lei
- 18% Preț: 1956.24 lei
- 18% Preț: 2280.52 lei
- 18% Preț: 2162.62 lei
- 18% Preț: 2242.66 lei
- 18% Preț: 1720.39 lei
- 23% Preț: 1919.43 lei
- 23% Preț: 1963.79 lei
- 18% Preț: 1977.01 lei
- 18% Preț: 2254.15 lei
- 18% Preț: 1960.90 lei
- 18% Preț: 1965.68 lei
- 18% Preț: 2292.15 lei
- 20% Preț: 2069.70 lei
- 18% Preț: 1982.62 lei
- 18% Preț: 1688.69 lei
- 18% Preț: 2253.50 lei
- 18% Preț: 2160.28 lei
- 18% Preț: 1957.79 lei
- 18% Preț: 1729.54 lei
- 18% Preț: 1973.45 lei
- 18% Preț: 2006.67 lei
- 18% Preț: 2028.53 lei
- 18% Preț: 2177.35 lei
- 18% Preț: 2138.22 lei
- 18% Preț: 1944.59 lei
- 18% Preț: 2072.75 lei
- 18% Preț: 1968.66 lei
- 18% Preț: 2137.00 lei
- 18% Preț: 1975.64 lei
- 18% Preț: 2250.42 lei
- 18% Preț: 1998.90 lei
- 20% Preț: 2052.18 lei
- 18% Preț: 2147.08 lei
- 23% Preț: 1959.73 lei
- 23% Preț: 1806.45 lei
- 23% Preț: 1865.18 lei
- 23% Preț: 1436.52 lei
- 23% Preț: 1591.60 lei
- 23% Preț: 1840.29 lei
- 14% Preț: 1223.33 lei
- 14% Preț: 1223.33 lei
- 20% Preț: 1892.94 lei
- 34% Preț: 1602.73 lei
- 14% Preț: 1223.33 lei
- 29% Preț: 1463.99 lei
Preț: 1950.81 lei
Preț vechi: 2379.03 lei
-18% Nou
Puncte Express: 2926
Preț estimativ în valută:
373.34€ • 388.95$ • 310.41£
373.34€ • 388.95$ • 310.41£
Carte disponibilă
Livrare economică 20 ianuarie-03 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662466568
ISBN-10: 3662466562
Pagini: 1000
Ilustrații: XXVI, 1016 p. 652 illus. in color.
Dimensiuni: 193 x 242 x 48 mm
Greutate: 2.13 kg
Ediția:2017
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Handbooks
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3662466562
Pagini: 1000
Ilustrații: XXVI, 1016 p. 652 illus. in color.
Dimensiuni: 193 x 242 x 48 mm
Greutate: 2.13 kg
Ediția:2017
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Handbooks
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
Professional/practitionerCuprins
Part A: Thermodynamics.- Part B: Electrodes and Electrode Processes.- Part C: Electrochemistry Probes.- Part D: Energy Conversation and Storage.- Part E: Electrochemical Processes.
Notă biografică
Cornelia Breitkopf is a Full Professor of in the Department of Mechanical Engineering and Chair of Technical Thermodynamics at the Technical University in Dresden, Germany. Her main research interests are transient methods for the evaluation of transport and sorption parameters of gases in porous media accompanied with the modeling of complex transport phenomena, the theoretical determination of property data, the characterization of solid porous materials, and modeling of silicon wafer structures.
She received her diploma in Chemistry from the Martin-Luther-University Halle-Wittenberg where she continued her research to earn a PhD in theoretical physical chemistry. After a postdoctoral position at the Birkbeck College/University of London, she joined also as postdoc the Environmental Research Center in Leipzig. She was a Guest Researcher at the Environmental Science Center in Peterborough, Canada and at the University of Wisconsin, USA. Following her habilitation, which was part of a priority program of the German Science Foundation (DFG), she was Professor for Chemical Reaction Engineering in Leipzig and Freiberg and then worked as a Senior Scientist at the Technical University of Munich before she was appointed Full Professor in Dresden in 2010.
Karen Swider-Lyons is a Head of the Alternative Energy Section in the Chemistry Division of the Naval Research Laboratory in Washington D.C. She currently leads research programs on advanced battery materials, low-cost catalysts for use in polymer fuel cells, and is studying how fuel cells can be used for long-endurance, energy-efficient unmanned air and undersea vehicles.
Karen Swider-Lyons obtained a PhD in Materials Science and Engineering from the University of Pennsylvania for her work on mixed conducting materials for solid oxide fuel cells. She also holds a BS in Chemistry from Haverford College. In 2010, she received the Dr. Delores M. Etter Top Scientist Award from the US Navy for her work on the long-endurance Ion Tiger Fuel Cell unmanned air vehicle. She has authored 72 papers in refereed journals, 95 technical articles/chapters and holds 14 patents. She is a member of the Materials Research Society and Electrochemical Society (ECS) and serves as a technical advisor to the Defense Advanced Research Projects Agency and the Office of Naval Research.
She received her diploma in Chemistry from the Martin-Luther-University Halle-Wittenberg where she continued her research to earn a PhD in theoretical physical chemistry. After a postdoctoral position at the Birkbeck College/University of London, she joined also as postdoc the Environmental Research Center in Leipzig. She was a Guest Researcher at the Environmental Science Center in Peterborough, Canada and at the University of Wisconsin, USA. Following her habilitation, which was part of a priority program of the German Science Foundation (DFG), she was Professor for Chemical Reaction Engineering in Leipzig and Freiberg and then worked as a Senior Scientist at the Technical University of Munich before she was appointed Full Professor in Dresden in 2010.
Karen Swider-Lyons is a Head of the Alternative Energy Section in the Chemistry Division of the Naval Research Laboratory in Washington D.C. She currently leads research programs on advanced battery materials, low-cost catalysts for use in polymer fuel cells, and is studying how fuel cells can be used for long-endurance, energy-efficient unmanned air and undersea vehicles.
Karen Swider-Lyons obtained a PhD in Materials Science and Engineering from the University of Pennsylvania for her work on mixed conducting materials for solid oxide fuel cells. She also holds a BS in Chemistry from Haverford College. In 2010, she received the Dr. Delores M. Etter Top Scientist Award from the US Navy for her work on the long-endurance Ion Tiger Fuel Cell unmanned air vehicle. She has authored 72 papers in refereed journals, 95 technical articles/chapters and holds 14 patents. She is a member of the Materials Research Society and Electrochemical Society (ECS) and serves as a technical advisor to the Defense Advanced Research Projects Agency and the Office of Naval Research.
Textul de pe ultima copertă
This comprehensive handbook covers all fundamentals of electrochemistry for contemporary applications. It provides a rich presentation of related topics of electrochemistry with a clear focus on energy technologies. It covers all aspects of electrochemistry starting with theoretical concepts and basic laws of thermodynamics, non-equilibrium thermodynamics and multiscale modeling. It further gathers the basic experimental methods such as potentiometry, reference electrodes, ion-sensitive electrodes, voltammetry and amperometry. The contents cover subjects related to mass transport, the electric double layer, ohmic losses and experimentation affecting electrochemical reactions. These aspects of electrochemistry are especially examined in view of specific energy technologies including batteries, polymer electrolyte and biological fuel cells, electrochemical capacitors, electrochemical hydrogen production and photoelectrochemistry.
Organized in six parts, the overall complexity of electrochemistry is presented and makes this handbook an authoritative reference and definitive source for advanced students, professionals and scientists particularly interested in industrial and energy applications.
Organized in six parts, the overall complexity of electrochemistry is presented and makes this handbook an authoritative reference and definitive source for advanced students, professionals and scientists particularly interested in industrial and energy applications.
Caracteristici
Offers a comprehensive source of all fundamentals of electrochemistry for contemporary applications Presents a timely and up-to-date reference in a field with increasing industrial impact Features many applications of electrochemistry in the energy sector and industrial settings Includes supplementary material: sn.pub/extras