Cantitate/Preț
Produs

Stabilization of Flexible Structures: Third Working Conference Montpellier, France, January 1989: Lecture Notes in Control and Information Sciences, cartea 147

Editat de J.P. Zolesio
en Limba Engleză Paperback – 8 feb 1991

Din seria Lecture Notes in Control and Information Sciences

Preț: 38544 lei

Nou

Puncte Express: 578

Preț estimativ în valută:
7379 7670$ 6118£

Carte tipărită la comandă

Livrare economică 06-20 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540531616
ISBN-10: 3540531610
Pagini: 340
Ilustrații: V, 331 p. 14 illus.
Dimensiuni: 170 x 244 x 18 mm
Greutate: 0.54 kg
Ediția:1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Control and Information Sciences

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Recent work on the scole model.- Mathematical study of large space structures.- Symbolic formulation of dynamic equations for interconnected flexible bodies: The GEMMES software.- Adaptive optics — Shape control of an adaptive mirror.- Energy decay estimates for a beam with nonlinear boundary feedback.- Uniform stabilization of the wave equation with dirichlet-feedback control without geometrical conditions.- Actuators and controllability of distributed systems.- Linear quadratic control problem without stabilizability.- Riccati equations in noncylindrical domains.- Boundary control problems for non-autonomous parabolic systems.- Existence and optimal control for wave equation in moving domain.- Galerkine approximation for wave equation in moving domain.- Further results on exact controllability of the Euler-Bernoulli equation with controls on the dirichlet and neumann boundary conditions.- Some properties of the value function of a nonlinear control problem in infinite dimensions.- Identification of coefficients with bounded variation in the wave equation.- Shape hessian by the velocity method: A Lagrangian approach.- Shape sensitivity analysis of hyperbolic problems.- Differential stability of perturbed optimization with applications to parameter estimation.- A numerical method for drag minimization via the suction and injection of mass through the boundary.- Using the physical properties of systems for control: An illustration.