State Estimation for Robotics: Second Edition
Autor Timothy D. Barfooten Limba Engleză Hardback – 30 ian 2024
Preț: 466.53 lei
Preț vechi: 583.16 lei
-20% Nou
Puncte Express: 700
Preț estimativ în valută:
89.33€ • 92.05$ • 74.97£
89.33€ • 92.05$ • 74.97£
Carte tipărită la comandă
Livrare economică 21 februarie-07 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781009299893
ISBN-10: 1009299891
Pagini: 581
Dimensiuni: 263 x 185 x 36 mm
Greutate: 1.13 kg
Ediția:2Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1009299891
Pagini: 581
Dimensiuni: 263 x 185 x 36 mm
Greutate: 1.13 kg
Ediția:2Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
Acronyms and abbreviations; Notation; Foreword to first edition; Foreword to second edition; 1. Introduction; Part I. Estimation Machinery: 2. Primer on probability theory; 3. Linear-Gaussian estimation; 4. Nonlinear non-Gaussian estimation; 5. Handling nonidealities in estimation; 6. Variational inference; Part II. Three-Dimensional Machinery: 7. Primer on three-dimensional geometry; 8. Matrix lie groups; Part III. Applications: 9. Pose estimation problems; 10. Pose-and-point estimation problems; 11. Continuous-time estimation; Appendix A: matrix primer; Appendix B: rotation and pose extras; Appendix C: miscellaneous extras; Appendix D: solutions to exercises; References; Index.
Recenzii
'This book provides a timely, concise, and well-scoped introduction to state estimation for robotics. It complements existing textbooks by giving a balanced presentation of estimation theoretic and geometric tools and discusses how these tools can be used to solve common estimation problems arising in robotics. It also strikes an excellent balance between theory and motivating examples.' Luca Carlone, IEEE Control Systems Magazine
Notă biografică
Descriere
This modern look at state estimation now covers variational inference, adaptive covariance estimation, and inertial navigation.