State Space and Unobserved Component Models: Theory and Applications
Editat de Andrew Harvey, Siem Jan Koopman, Neil Shepharden Limba Engleză Paperback – 12 sep 2012
Preț: 428.23 lei
Nou
Puncte Express: 642
Preț estimativ în valută:
81.96€ • 84.47$ • 69.20£
81.96€ • 84.47$ • 69.20£
Carte tipărită la comandă
Livrare economică 03-17 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781107407435
ISBN-10: 1107407435
Pagini: 398
Dimensiuni: 170 x 241 x 25 mm
Greutate: 0.66 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1107407435
Pagini: 398
Dimensiuni: 170 x 241 x 25 mm
Greutate: 0.66 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
Part I. State Space Models: 1. Introduction to state space time series analysis James Durbin; 2. State structure, decision making and related issues Peter Whittle; 3. An introduction to particle filters Simon Maskell; Part II. Testing: 4. Frequence domain and wavelet-based estimation for long-memory signal plus noise models Katsuto Tanaka; 5. A goodness-of-fit test for AR (1) models and power against state-space alternatives T. W. Anderson and Michael A. Stephens; 6. Test for cycles Andrew C. Harvey; Part III. Bayesian Inference and Bootstrap: 7. Efficient Bayesian parameter estimation Sylvia Frühwirth-Schnatter; 8. Empirical Bayesian inference in a nonparametric regression model Gary Koop and Dale Poirier; 9. Resampling in state space models David S. Stoffer and Kent D. Wall; Part IV. Applications: 10. Measuring and forecasting financial variability using realised variance Ole E. Barndorff-Nielsen, Bent Nielsen, Neil Shephard and Carla Ysusi; 11. Practical filtering for stochastic volatility models Jonathan R. Stroud, Nicholas G. Polson and Peter Müller; 12. On RegComponent time series models and their applications William R. Bell; 13. State space modeling in macroeconomics and finance using SsfPack in S+Finmetrics Eric Zivot, Jeffrey Wang and Siem Jan Koopman; 14. Finding genes in the human genome with hidden Markov models Richard Durbin.
Recenzii
Review of the hardback: 'There is much in this book, and I would heartily recommend it to specialists and librarians. I know of no other comparable text.' Journal of the Royal Statistical Society
Descriere
A comprehensive overview of developments in the theory and application of state space modeling, first published in 2004.