Statistical Modeling Using Local Gaussian Approximation
Autor Dag Tjøstheim, Håkon Otneim, Bård Støveen Limba Engleză Paperback – 7 oct 2021
Additional chapters explores Measuring dependence and testing for independence, Time series dependence and spectral analysis, Multivariate density estimation, Conditional density estimation, The local Gaussian partial correlation, Regression and conditional regression quantiles, and a A local Gaussian Fisher discriminant.
- Reviews local dependence modeling with applications to time series and finance markets
- Introduces new techniques for density estimation, conditional density estimation, and tests of conditional independence with applications in economics
- Evaluates local spectral analysis, discovering hidden frequencies in extremes and hidden phase differences
- Integrates textual content with three useful R packages
Preț: 615.87 lei
Preț vechi: 751.05 lei
-18% Nou
Puncte Express: 924
Preț estimativ în valută:
117.87€ • 122.58$ • 98.63£
117.87€ • 122.58$ • 98.63£
Carte disponibilă
Livrare economică 22 februarie-08 martie
Livrare express 08-14 februarie pentru 36.19 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128158616
ISBN-10: 0128158611
Pagini: 458
Dimensiuni: 152 x 229 x 28 mm
Greutate: 0.61 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0128158611
Pagini: 458
Dimensiuni: 152 x 229 x 28 mm
Greutate: 0.61 kg
Editura: ELSEVIER SCIENCE
Public țintă
Graduate students and 1st year PhD students researching problems in econometrics, statistics, financial econometrics and related areas where it is important to model statistical dependence, do density and conditional density estimation, and seek for periodicities and cycles in data.
Cuprins
1. Introduction
2. Parametric, nonparametric, locally parametric
3. Dependence
4. Local Gaussian correlation and dependence
5. Local Gaussian correlation and the copula
6. Applications in finance
7. Measuring dependence and testing for independence
8. Time series dependence and spectral analysis
9. Multivariate density estimation
10. Conditional density estimation
11. The local Gaussian partial correlation
12. Regression and conditional regression quantiles
13. A local Gaussian Fisher discriminant
2. Parametric, nonparametric, locally parametric
3. Dependence
4. Local Gaussian correlation and dependence
5. Local Gaussian correlation and the copula
6. Applications in finance
7. Measuring dependence and testing for independence
8. Time series dependence and spectral analysis
9. Multivariate density estimation
10. Conditional density estimation
11. The local Gaussian partial correlation
12. Regression and conditional regression quantiles
13. A local Gaussian Fisher discriminant