Cantitate/Preț
Produs

Statistical Modeling Using Local Gaussian Approximation

Autor Dag Tjøstheim, Håkon Otneim, Bård Støve
en Limba Engleză Paperback – 7 oct 2021
Statistical Modeling using Local Gaussian Approximation extends powerful characteristics of the Gaussian distribution, perhaps, the most well-known and most used distribution in statistics, to a large class of non-Gaussian and nonlinear situations through local approximation. This extension enables the reader to follow new methods in assessing dependence and conditional dependence, in estimating probability and spectral density functions, and in discrimination. Chapters in this release cover Parametric, nonparametric, locally parametric, Dependence, Local Gaussian correlation and dependence, Local Gaussian correlation and the copula, Applications in finance, and more.
Additional chapters explores Measuring dependence and testing for independence, Time series dependence and spectral analysis, Multivariate density estimation,  Conditional density estimation, The local Gaussian partial correlation, Regression and conditional regression quantiles, and a A local Gaussian Fisher discriminant.


  • Reviews local dependence modeling with applications to time series and finance markets
  • Introduces new techniques for density estimation, conditional density estimation, and tests of conditional independence with applications in economics
  • Evaluates local spectral analysis, discovering hidden frequencies in extremes and hidden phase differences
  • Integrates textual content with three useful R packages
Citește tot Restrânge

Preț: 61587 lei

Preț vechi: 75105 lei
-18% Nou

Puncte Express: 924

Preț estimativ în valută:
11787 12258$ 9863£

Carte disponibilă

Livrare economică 22 februarie-08 martie
Livrare express 08-14 februarie pentru 3619 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780128158616
ISBN-10: 0128158611
Pagini: 458
Dimensiuni: 152 x 229 x 28 mm
Greutate: 0.61 kg
Editura: ELSEVIER SCIENCE

Public țintă

Graduate students and 1st year PhD students researching problems in econometrics, statistics, fi
nancial econometrics and related areas where it is important to model statistical dependence, do density and conditional density estimation, and seek for periodicities and cycles in data.

Cuprins

1. Introduction
2. Parametric, nonparametric, locally parametric
3. Dependence
4. Local Gaussian correlation and dependence
5. Local Gaussian correlation and the copula
6. Applications in finance
7. Measuring dependence and testing for independence
8. Time series dependence and spectral analysis
9. Multivariate density estimation
10. Conditional density estimation
11. The local Gaussian partial correlation
12. Regression and conditional regression quantiles
13. A local Gaussian Fisher discriminant