Cantitate/Preț
Produs

Statistical Physics II: Nonequilibrium Statistical Mechanics: Springer Series in Solid-State Sciences, cartea 31

Autor Ryogo Kubo Traducere de M. Toda Autor Morikazu Toda Traducere de R. Kubo Autor Natsuki Hashitsume Traducere de N. Saito, N. Hashitsume
en Limba Engleză Paperback – 14 noi 1991
Statistical Physics II introduces nonequilibrium theories of statistical mechanics from the viewpoint of the fluctuation-disipation theorem. Emphasis is placed on the relaxation from nonequilibrium to equilibrium states, the response of a system to an external disturbance, and general problems involved in deriving a macroscopic physical process from more basic underlying processes. Fundamental concepts and methods are stressed, rather than the numerous individual applications.
Citește tot Restrânge

Din seria Springer Series in Solid-State Sciences

Preț: 94467 lei

Preț vechi: 115204 lei
-18% Nou

Puncte Express: 1417

Preț estimativ în valută:
18079 18715$ 15281£

Carte tipărită la comandă

Livrare economică 06-20 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540538332
ISBN-10: 354053833X
Pagini: 300
Ilustrații: XVI, 279 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.42 kg
Ediția:2nd ed. 1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Solid-State Sciences

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1. Brownian Motion.- 1.1 Brownian Motion as a Stochastic Process.- 1.2 The Central Limit Theorem and Brownian Motion.- 1.3 The Langevin Equation and Harmonic Analysis.- 1.4 Gaussian Processes.- 1.5 Brownian Motion Modeled by a Gaussian Process.- 1.6 The Fluctuation-Dissipation Theorem.- 2. Physical Processes as Stochastic Processes.- 2.1 Random Frequency Modulation.- 2.2 Brownian Motion Revisited.- 2.3 Markovian Processes.- 2.4 Fokker-Planck Equation.- 2.5 Contraction of Information. Projected Processes.- 2.6 Derivation of Master Equations.- 2.7 Brownian Motion of a Quantal System.- 2.8 Boltzmann Equation.- 2.9 Generalized Langevin Equation and the Damping Theory.- 3. Relaxation and Resonance Absorption.- 3.1 Linear Irreversible Processes.- 3.2 Complex Admittance.- 3.3 Debye Relaxation.- 3.4 Resonance Absorption.- 3.5 Wave Number-Dependent Complex Admittance.- 3.6 Dispersion Relations.- 3.7 Sum Rules and Interpolation Formulas.- 4. Statistical Mechanics of Linear Response.- 4.1 Static Response to External Force.- 4.2 Dynamic Response to External Force.- 4.3 Symmetry and the Dispersion Relations.- 4.4 Fluctuation and Dissipation Theorem.- 4.5 Density Response, Conduction and Diffusion.- 4.6 Response to Thermal Internal Forces.- 4.7 Some Remarks on the Linear-Response Theory.- 5. Quantum Field Theoretical Methods in Statistical Mechanics.- 5.1 Double-Time Green’s Functions.- 5.2 Chain of Equations of Motion and the Decoupling Approximation.- 5.3 Relation to the Kinetic Equation.- 5.4 Single-Particle Green’s Function and the Causal Green’s Function.- 5.5 Basic Formula for Perturbational Expansion.- 5.6 Temperature Green’s function.- 5.7 Diagram Technique.- 5.8 Dyson Equation.- 5.9 Relationship Between the Thermodynamic Potential and the Temperature Green’sFunction.- 5.10 Special Case of the Two-Particle Green’s function.- General Bibliography of Textbooks.- References.

Textul de pe ultima copertă

Statistical Physics II introduces nonequilibrium theories of statistical mechanics from the viewpoint of the fluctuation-dissipation theorem. Emphasis is placed on relaxation from nonequilibrium to equilibrium states, the response of a system to an external disturbance, and general problems involved in deriving a macroscopic physical process from more basic underlying processes. Fundamental concepts and methods are stressed, rather than the numerous individual applications.