Structural Health Monitoring (SHM) in Aerospace Structures: Woodhead Publishing Series in Composites Science and Engineering
Editat de Fuh-Gwo Yuanen Limba Engleză Hardback – 18 mar 2016
The SHM field encompasses transdisciplinary areas, including smart materials, sensors and actuators, damage diagnosis and prognosis, signal and image processing algorithms, wireless intelligent sensing, data fusion, and energy harvesting. This book focuses on how SHM techniques are applied to aircraft structures with particular emphasis on composite materials, and is divided into four main parts.
Part One provides an overview of SHM technologies for damage detection, diagnosis, and prognosis in aerospace structures. Part Two moves on to analyze smart materials for SHM in aerospace structures, such as piezoelectric materials, optical fibers, and flexoelectricity. In addition, this also includes two vibration-based energy harvesting techniques for powering wireless sensors based on piezoelectric electromechanical coupling and diamagnetic levitation. Part Three explores innovative SHM technologies for damage diagnosis in aerospace structures. Chapters within this section include sparse array imaging techniques and phase array techniques for damage detection. The final section of the volume details innovative SHM technologies for damage prognosis in aerospace structures.
This book serves as a key reference for researchers working within this industry, academic, and government research agencies developing new systems for the SHM of aerospace structures and materials scientists.
- Provides key information on the potential of SHM in reducing maintenance and repair costs
- Analyzes current SHM technologies and sensing systems, highlighting the innovation in each area
- Encompasses chapters on smart materials such as electroactive polymers and optical fibers
Din seria Woodhead Publishing Series in Composites Science and Engineering
- 29% Preț: 1153.66 lei
- 29% Preț: 1477.86 lei
- 24% Preț: 1160.48 lei
- 39% Preț: 1153.30 lei
- 24% Preț: 1451.12 lei
- 9% Preț: 1019.80 lei
- 29% Preț: 1129.94 lei
- 9% Preț: 1049.32 lei
- 29% Preț: 1067.77 lei
- 9% Preț: 1069.37 lei
- 29% Preț: 1326.23 lei
- 29% Preț: 1243.53 lei
- 29% Preț: 1213.41 lei
- 39% Preț: 1155.04 lei
- 9% Preț: 1006.50 lei
- 29% Preț: 1067.31 lei
- 9% Preț: 1140.31 lei
- 24% Preț: 1130.30 lei
- 9% Preț: 1069.99 lei
- 24% Preț: 1130.20 lei
- 9% Preț: 904.59 lei
- 23% Preț: 999.51 lei
- 9% Preț: 1542.98 lei
- 23% Preț: 992.64 lei
- 9% Preț: 1210.03 lei
- 9% Preț: 1328.05 lei
- 24% Preț: 1563.73 lei
- 24% Preț: 1559.63 lei
- 9% Preț: 1212.62 lei
- 29% Preț: 1158.40 lei
- 28% Preț: 1075.60 lei
- 29% Preț: 1158.75 lei
- 29% Preț: 925.09 lei
- 29% Preț: 1417.65 lei
- 9% Preț: 989.97 lei
- 29% Preț: 1479.85 lei
- 9% Preț: 1335.20 lei
- 29% Preț: 1189.81 lei
- 9% Preț: 1069.82 lei
- 33% Preț: 946.33 lei
- 24% Preț: 955.72 lei
- 29% Preț: 1186.95 lei
- 29% Preț: 1393.64 lei
- 9% Preț: 1011.50 lei
- 9% Preț: 1071.27 lei
- 24% Preț: 1234.77 lei
- 9% Preț: 1208.48 lei
- 9% Preț: 1308.84 lei
- 29% Preț: 1311.49 lei
Preț: 1159.26 lei
Preț vechi: 1516.54 lei
-24% Nou
Puncte Express: 1739
Preț estimativ în valută:
221.85€ • 228.88$ • 187.76£
221.85€ • 228.88$ • 187.76£
Carte tipărită la comandă
Livrare economică 25 februarie-11 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780081001486
ISBN-10: 0081001487
Pagini: 514
Dimensiuni: 152 x 229 x 30 mm
Greutate: 0.96 kg
Editura: ELSEVIER SCIENCE
Seria Woodhead Publishing Series in Composites Science and Engineering
ISBN-10: 0081001487
Pagini: 514
Dimensiuni: 152 x 229 x 30 mm
Greutate: 0.96 kg
Editura: ELSEVIER SCIENCE
Seria Woodhead Publishing Series in Composites Science and Engineering
Public țintă
R&D managers and engineers in aerospace; researchers working in industry, academia and government research agencies developing new systems for the SHM of aerospace structures, materials scientists.Cuprins
Part One: SHM Technologies for Damage Detection, Diagnosis and Prognosis in Aerospace Structures: Application and Efficient Use
1. Integrated Vehicle Health Management (IVHM)
2. A Novel Approach for Implementing Structural Health Monitoring Systems for Aerospace Structures
Part Two: Smart Materials for SHM in Aerospace Structures
3. Piezoelectric Materials for SHM in Aerospace Structures
4. Electroactive Polymers for SHM in Aerospace Structures
5. Using Optical Fibers for Ultrasonic Damage Detection in Aerospace Structures
6. Flexoelectricity in Aerospace Structures
7. Energy Harvesting using Piezoelectric Materials in Aerospace Structures
8. Diamagnetically Levitated Vibration Energy Harvester in Aerospace Structures
Part Three: Innovative SHM Technologies for Damage Diagnosis in Aerospace Structures
9. Array Imaging with Guided Waves under Variable Environmental Conditions
10. Phase Array Techniques for Damage Detection in Aerospace Structures
11. Defect detection, classification and sizing using ultrasound
12. Non-contact Laser Ultrasonics for SHM in Aerospace Structures
13. Nonlinear Ultrasonics for Health Monitoring of Aerospace Structures using Active Sparse Sensor Networks
14. Space-Wavenumber and Time-Frequency Analyses for Vibration- and Wave-based Damage Diagnosis
Part Four: Innovative SHM Technologies for Damage Prognosis in Aerospace Structures
15. Fatigue damage diagnosis and prognosis using EMI technique
16. An Energy-based Prognostic Framework to Predict Evolution of Damage
1. Integrated Vehicle Health Management (IVHM)
2. A Novel Approach for Implementing Structural Health Monitoring Systems for Aerospace Structures
Part Two: Smart Materials for SHM in Aerospace Structures
3. Piezoelectric Materials for SHM in Aerospace Structures
4. Electroactive Polymers for SHM in Aerospace Structures
5. Using Optical Fibers for Ultrasonic Damage Detection in Aerospace Structures
6. Flexoelectricity in Aerospace Structures
7. Energy Harvesting using Piezoelectric Materials in Aerospace Structures
8. Diamagnetically Levitated Vibration Energy Harvester in Aerospace Structures
Part Three: Innovative SHM Technologies for Damage Diagnosis in Aerospace Structures
9. Array Imaging with Guided Waves under Variable Environmental Conditions
10. Phase Array Techniques for Damage Detection in Aerospace Structures
11. Defect detection, classification and sizing using ultrasound
12. Non-contact Laser Ultrasonics for SHM in Aerospace Structures
13. Nonlinear Ultrasonics for Health Monitoring of Aerospace Structures using Active Sparse Sensor Networks
14. Space-Wavenumber and Time-Frequency Analyses for Vibration- and Wave-based Damage Diagnosis
Part Four: Innovative SHM Technologies for Damage Prognosis in Aerospace Structures
15. Fatigue damage diagnosis and prognosis using EMI technique
16. An Energy-based Prognostic Framework to Predict Evolution of Damage