Cantitate/Preț
Produs

Superconvergence in Galerkin Finite Element Methods: Lecture Notes in Mathematics, cartea 1605

Autor Lars Wahlbin
en Limba Engleză Paperback – 14 iul 1995
This book is essentially a set of lecture notes from a graduate seminar given at Cornell in Spring 1994. It treats basic mathematical theory for superconvergence in the context of second order elliptic problems. It is aimed at graduate students and researchers. The necessary technical tools are developed in the text although sometimes long proofs are merely referenced.
The book gives a rather complete overview of the field of superconvergence (in time-independent problems). It is the first text with such a scope. It includes a very complete and up-to-date list of references.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 34162 lei

Nou

Puncte Express: 512

Preț estimativ în valută:
6548 6873$ 5401£

Carte tipărită la comandă

Livrare economică 23 ianuarie-06 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540600114
ISBN-10: 3540600116
Pagini: 184
Ilustrații: XII, 172 p.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.27 kg
Ediția:1995
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Some one-dimensional superconvergence results.- Remarks about some of the tools used in Chapter 1.- Local and global properties of L 2-projections.- to several space dimensions: some results about superconvergence in L 2-projections.- Second order elliptic boundary value problems in any number of space dimensions: preliminary considerations on local and global estimates and presentation of the main technical tools for showing superconvergence.- Superconvergence in tensor-product elements.- Superconvergence by local symmetry.- Superconvergence for difference quotients on translation invariant meshes.- On superconvergence in nonlinear problems.- 10. Superconvergence in isoparametric mappings of translation invariant meshes: an example.- Superconvergence by averaging: mainly, the K-operator.- A computational investigation of superconvergence for first derivatives in the plane.