Cantitate/Preț
Produs

Sustainable Farming through Machine Learning: Enhancing Productivity and Efficiency: Artificial Intelligence for Sustainable Engineering and Management

Editat de Suneeta Satpathy, Bijay Kumar Paikaray, Ming Yang, Arunkumar Balakrishnan
en Limba Engleză Hardback – 25 noi 2024
This book explores the transformative potential of ML technologies in agriculture. It delves into specific applications, such as crop monitoring, disease detection, and livestock management, demonstrating how AI/ML can optimize resource management and improve overall productivity in farming practices.
Sustainable Farming through Machine Learning: Enhancing Productivity and Efficiency provides an in-depth overview of AI and ML concepts relevant to the agricultural industry. It discusses the challenges faced by the agricultural sector and how AI/ML can address them. The authors highlight the use of AI/ML algorithms for plant disease and pest detection and examine the role of AI/ML in supply chain management and demand forecasting in agriculture. It includes an examination of the integration of AI/ML with agricultural robotics for automation and efficiency. They also cover applications in livestock management, including feed formulation and disease detection, they also explore the use of AI/ML for behavior analysis and welfare assessment in livestock. Finally, the authors also explore ethical and social implications of using such technologies.
This book can be used as a textbook for students in agricultural engineering, precision farming, and smart agriculture. It can also be a reference book for practicing professionals in machine learning, and deep learning working on sustainable agriculture applications.
Citește tot Restrânge

Din seria Artificial Intelligence for Sustainable Engineering and Management

Preț: 56910 lei

Preț vechi: 76540 lei
-26% Nou

Puncte Express: 854

Preț estimativ în valută:
10892 11490$ 9077£

Carte nepublicată încă

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032777498
ISBN-10: 1032777494
Pagini: 302
Ilustrații: 208
Dimensiuni: 156 x 234 mm
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Artificial Intelligence for Sustainable Engineering and Management

Locul publicării:Boca Raton, United States

Public țintă

Postgraduate, Professional Practice & Development, Professional Reference, and Undergraduate Advanced

Cuprins

1. Exploring AI and ML Strategies for Crop Health Monitoring and Management. 2. Enhancing Crop Productivity by Suitable Crop Prediction Using Cutting-Edge Technologies. 3. Crop Yield Prediction Using Machine Learning Random Forest Algorithm. 4. A multi-objective based genetic approach for increasing crop yield on sustainable farming. 5. Drones For Crop Monitoring And Analysis. 6. Decision Support System For Sustainable Farming. 7. Empowering Agriculture: Harnessing the Potential of AI-Driven Virtual Tutors for Farmer Education and Investment Strategies. 8. Enhancing Agricultural Ecosystem Surveillance through Autonomous Sensor Networks. 9. Crop Disease Detection Using Image Analysis. 10. Automated Detection of Plant Diseases Utilizing Convolutional Neural Networks. 11. Apple Leaves Diseases Detection Using Deep Learning. 12.Optimizing Agricultural Yield: Comprehensive Approaches for Recommendation System in Precision Agriculture. 13. Advancements in Precision Agriculture: A Machine Learning-based Approach for Crop Management Optimization. 14. Precision Agriculture with Remote Sensing: Integrating Deep Learning for Crop Monitoring. 15. Farmers Guide: Data-Driven Crop Recommendations for Precision and Sustainable Agriculture Using IoT and ML. 16. Application of Machine Learning in the Analysis and Prediction of Animal Disease. 17. Transforming Indian Agriculture: A Machine Learning Approach for Informed Decision-Making and Sustainable Crop Recommendations. 18. Automated Detection of Water Quality for Smart Systems using Various Sampling Techniques - An Agricultural Perspective. 19. Scope of Artificial Intelligence (A.I.) in “Agriculture Sector and its applicability in Farm Mechanization in Odisha. 20. Ethical Considerations and Social Implications.                                                                                                                                                            

Notă biografică

Dr. Suneeta Satpathy, PhD, is an Associate Professor in Center for AI & ML, Siksha 'O' Anusandhan (Deemed to be) University, Odisha, India. Her research interests include computer forensics, cyber security, data fusion, data mining, big data analysis, decision mining and machine learning.  She has published papers in many international journals and conferences in repute. She has two Indian patents in her credit, and is a member of IEEE, CSI, ISTE, OITS, and IE.
Dr. Bijay Kumar Paikaray, PhD, is an Associate Professor at the Center for Data Science, Siksha 'O' Anusandhan (Deemed to be) University, Odisha. His interests include high-performance computing, information security, machine learning and IoT.
Dr. Ming Yang has a Ph.D. in Computer Science from Wright State University, Dayton, Ohio, US, 2006. Currently he is a Professor in the College of Computing and Software Engineering Kennesaw State University, GA, USA. His research interests include multimedia communication, digital image/video processing, computer vision, and machine learning.
Dr. Arunkumar Balakrishnan PhD, holds the position of Assistant Professor Senior Grade in the Computer Science and Engineering department at VIT-AP University. He obtained his Ph.D. in Information Science and Engineering from Anna University, Chennai. He possesses 12 years of academic expertise and an additional 6 years of concurrent research experience in the domains of Cryptography, Medical Image Security, Blockchain, and NFT. His research interests encompass Cryptography, Network Security, Medical Image Encryption, Blockchain, lightweight cryptography methods, and NFT.

Descriere

Explores the transformative potential of ML technologies in agriculture. It delves into specific applications, such as crop monitoring, disease detection, and livestock management, demonstrating how AI/ML can optimize resource management and improve overall productivity in farming practices.