Cantitate/Preț
Produs

System-Materials Nanoarchitectonics: NIMS Monographs

Editat de Yutaka Wakayama, Katsuhiko Ariga
en Limba Engleză Paperback – 4 ian 2022
This book is the first publication to widely introduce the contributions of nanoarchitectonics to the development of functional materials and systems. The book opens up pathways to novel nanotechnology based on bottom-up techniques. In fields of nanotechnology, theoretical and practical limitations are expected in the bottom-up nanofabrication process. Instead, some supramolecular processes for nano- and microstructure formation including molecular recognition, self-assembly, and template synthesis have gained great attention as novel key technologies to break through expected limitations in current nanotechnology. This volume describes future images of nanotechnology and related materials and device science as well as practical applications for energy and biotechnology. Readers including specialists, non-specialists, graduate students, and undergraduate students can focus on the parts of the book that interest and concern them most. Target fields include materials chemistry, organic chemistry, physical chemistry, nanotechnology, and even biotechnology. 

Citește tot Restrânge

Din seria NIMS Monographs

Preț: 71429 lei

Preț vechi: 87109 lei
-18% Nou

Puncte Express: 1071

Preț estimativ în valută:
13670 141100$ 11355£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9784431569114
ISBN-10: 4431569111
Pagini: 338
Ilustrații: IX, 338 p. 169 illus., 157 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.49 kg
Ediția:1st ed. 2022
Editura: Springer
Colecția Springer
Seria NIMS Monographs

Locul publicării:Tokyo, Japan

Cuprins

What is Nanoarchitectonics?.- Synthesis of Semiconductor Nanowires.- Nanoparticle Biomarkers Adapted for Near-Infrared Fluorescence Imaging.- Frontiers in Mesoscale Materials Design.- Wavelengh-selective Photothermal Infrared Sensors.- Functional Molecular Liquids.- Ionic nanoarchitectonics: Creation of polymer-based atomic switch and decision-making device.- Oxoporphyrinogens: Novel Dyes based on the Fusion of Calix[4]pyrrole, Quinonoids and Porphyrins.- Growth and electronic and optoelectronic applications of surface oxides on atomically thin WSe2.- Portable toxic gas sensors based on functionalized carbon nanotubes.- Advanced Nanomechanical Sensor for Artificial Olfactory System: Membrane-type Surface Stress Sensor (MSS).- Quantum Molecular Devices toward Large-Scale Integration.- Nanostructured bulk thermoelectric materials for energy harvesting.- Artificial Photosynthesis: Fundamentals, Challenges, and Strategies.- Smart Polymers for Biomedical Applications.- Geometrical andmechanical nanoarchitectonics at interfaces bridging molecules with cell phenotypes.- Electrical measurement by Multiple-Probe Scanning Probe Microscope.- Large-Scale First-principles Calculation Technique for Nanoarchitectonics: Local orbital and Linear-scaling DFT methods with the CONQUEST code.- Machine Learning Approaches in Nanoarchitectonics.

Notă biografică

Yutaka Wakayama (National Institute for Materials Science)
Yutaka Wakayama received his PhD degree from University of Tsukuba on 1998. He is currently the leader of Quantum Device Engineering Group of World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), the National Institute for Materials Science (NIMS). His research is oriented to fundamental studies on molecular assemblies in various dimensions and their application to optoelectronic devices: crystalline and electronic structure of molecular superlattice, carrier transport through directed- and self-assembled molecular wires, STM study on two-dimensional supermolecules, molecular quantum dot for single-electron devices, and advanced functional organic field-effect transistors. He has been appointed as a professor of Kyushu University since 2009.


Katsuhiko Ariga (National Institute for Materials Science, The University of Tokyo)

World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Katsuhiko Ariga received his PhD degree from Tokyo Institute of Technology. He is currently the Director of Supermolecules Group and Principal Investigator of World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), the National Institute for Materials Science (NIMS). His research is oriented to supramolecular chemistry, surface science, and functional nanomaterials (Lanmguir-Blodgett film, layer-by-layer assembly, self-organized materials, sensing & drug delivery, molecular recognition, mesoporous material etc.) and is now trying to combine them into unified field for world-surprise. He is editors and editorial advisory members of ca. 20 scientific journals. He is Fellow of Royal Societ of Chemistry, Nice-Step Reseracher (2010), Highly Cited Reseracher, and a member of World Economic Forum Expert Network. Since 2017, he is also appointed as a professor of The University of Tokyo.



Textul de pe ultima copertă

This book is the first publication to widely introduce the contributions of nanoarchitectonics to the development of functional materials and systems. The book opens up pathways to novel nanotechnology based on bottom-up techniques. In fields of nanotechnology, theoretical and practical limitations are expected in the bottom-up nanofabrication process. Instead, some supramolecular processes for nano- and microstructure formation including molecular recognition, self-assembly, and template synthesis have gained great attention as novel key technologies to break through expected limitations in current nanotechnology. This volume describes future images of nanotechnology and related materials and device science as well as practical applications for energy and biotechnology. Readers including specialists, non-specialists, graduate students, and undergraduate students can focus on the parts of the book that interest and concern them most. Target fields include materials chemistry, organic chemistry, physical chemistry, nanotechnology, and even biotechnology. 

Caracteristici

Makes generous use of easily understandable figures Provides easy-to-understand explanations of the latest information on a hot topic in science Includes essential knowledge of the relationship between nanoarchitectonics and near-future life