Cantitate/Preț
Produs

Terraforming Mars: Astrobiology Perspectives on Life in the Universe

Autor M Beech
en Limba Engleză Hardback – 9 dec 2021
Die Idee, den Mars zu terraformen, ist in der letzten Zeit zu einem Thema von großem wissenschaftlichem Interesse und umfassender öffentlicher Diskussion geworden. Das Terraforming, das teilweise durch die aktuelle Notwendigkeit angeregt wird, auf der Erde Geoengineering zum Kampf gegen den globalen Klimawandel einzusetzen, soll die derzeit lebensfeindliche Umgebung auf dem Mars lebensfreundlicher machen ? insbesondere für menschliches Leben. Geoengineering und Terraforming haben im Kern dasselbe Ziel: Sie sollen eine bestimmte Umgebung so verbessern (oder wiederherstellen), dass darauf menschliches Leben, Gesellschaft und Industrie möglich sind. Die Artikel in diesem Buch, die von Experten auf ihrem jeweiligen Gebiet verfasst wurden, stehen daher im Einklang mit der wichtigen, anhaltenden Diskussion über die menschliche Verantwortung für globale Klimasysteme. Daher ist das Buch aktuell und relevant und beschäftigt sich mit der Problematik von Themen, die in den kommenden Jahrzehnten noch an Bedeutung gewinnen werden. Der Gedanke, den Mars zu terraformen, ist an sich nicht neu und bildet schon lange das Gerüst für zahlreiche Science-Fiction-Romane. Dieses Buch befasst sich jedoch ausschließlich mit dem, was physikalisch möglich ist und was innerhalb der nächsten Generationen der Menschheit möglicherweise in die Praxis umgesetzt werden könnte.
Citește tot Restrânge

Din seria Astrobiology Perspectives on Life in the Universe

Preț: 108516 lei

Preț vechi: 158001 lei
-31% Nou

Puncte Express: 1628

Preț estimativ în valută:
20774 21594$ 17224£

Carte indisponibilă temporar

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781119761969
ISBN-10: 1119761964
Pagini: 592
Dimensiuni: 178 x 254 x 29 mm
Greutate: 1.38 kg
Editura: Wiley
Seria Astrobiology Perspectives on Life in the Universe

Locul publicării:Hoboken, United States

Cuprins

Preface xv Part 1: Introduction 1 1 Terraforming and Colonizing Mars 3 Giancarlo Genta 1.1 Introduction 3 1.2 Earth: A Terraformed Planet 4 1.3 Planetary Environments 6 1.4 Terraforming Mars 10 1.5 The Role of Solar Wind 15 1.6 Ethical Aspects 16 1.7 Venus, Moon, Titan... 19 References 21 Part 2: Engineering Mars 23 2 Terraforming Worlds: Humans Playing Games of Gods 25 Nilo Serpa and Richard Cathcart Early Mars 26 Oceans Here and There 28 The Mars We are Creating Here 30 Mars: An Arena of Delusions? 34 References 35 3 Mars, A Stepping-Stone World, Macro-Engineered 37 Richard B. Cathcart 3.1 Introduction 37 3.2 Mars-Crust as Kinetic Architecture 38 3.3 A Crust-Infrastructure Mixture 39 3.4 Infrastructure and Life-Styles 40 3.5 Atmosphere Enhancements for Mars 44 3.6 Between Then and Now 46 Acknowledgments 48 References 48 4 Efficient Martian Settlement with the Mars Terraformer Transfer (MATT) and the Omaha Trail 51 Gary Stewart 4.1 Introduction 51 4.2 Construction Efficiencies of MATT's Small-Scale Terraformation 52 4.2.1 Impact Terraformation for Settlement 52 4.2.2 Impactor Redirection with DE-STARLITE 55 4.2.3 Subaqueous Hab Network at Omaha Crater 57 4.3 Provisioning Efficiencies of the Omaha Trail 61 4.3.1 Deimos Dock 63 4.3.2 Mars Lift 64 4.3.3 Arestation 66 4.3.4 Deimos Rail Launcher (DRL) 66 4.4 Cosmic Ray Protection: From Omaha Trail to Omaha Shield 67 4.5 Conclusion 68 References 69 5 Mars Colonization: Beyond Getting There 73 Igor Levchenko, Shuyan Xu, Stéphane Mazouffre, Michael Keidar and Kateryna Bazaka 5.1 Mars Colonization - Do We Need it? 73 5.2 Legal Considerations 78 5.2.1 Do Earth Laws Apply To Mars Colonists? 78 5.2.2 Sovereignty 79 5.2.3 Human Rights 80 5.2.4 Abortion 82 5.3 Ethical Considerations 83 5.3.1 General 83 5.3.2 Human Reproduction - Ethical Considerations 84 5.3.3 Social Isolation and No Privacy - Rolled into One 85 5.3.4 Advocacy for Mars - is it Ethical at All to Colonize it? 86 5.4 Consideration of Resources 88 5.5 Quo Vadis, the Only Civilization We Know? 89 5.6 Afterword. Where are We Three Years Later? 89 5.6.1 Current Programs and Their Status - in Brief 89 5.6.2 Any News About Mars? 90 5.6.3 Tasks and Challenges 90 Acknowledgements 92 References 92 Part 3: Ethical Exploration 99 6 The Ethics of Terraforming: A Critical Survey of Six Arguments 101 Ian Stoner 6.1 Introduction 101 6.2 Audience and Method 102 6.3 Preservationist Arguments 103 6.3.1 We Should Preserve Mars's Value as a Unique Object of Scientific Interest 103 6.3.2 We Should Preserve the Integrity of the Martian Wilderness 104 6.3.3 We Should Avoid Expressing Colonialist Vices 106 6.4 Interventionist Arguments 108 6.4.1 We Should Fulfill our Inborn Nature as Pioneers 108 6.4.2 We Should Increase Our Species' Chance of Long-Term Survival 109 6.4.3 We Should Rehabilitate Mars for Martians 112 6.5 Conclusion 113 Acknowledgments 114 References 114 7 Homo Reductio Eco-Nihilism and Human Colonization of Other Worlds 117 Kelly Smith 7.1 Introduction 117 7.2 Implicit Assumptions 119 7.3 Conclusion 121 Acknowledgements 122 References 122 8 Ethical, Political and Legal Challenges Relating to Colonizing and Terraforming Mars 123 Konrad Szocik 8.1 Introduction 123 8.2 Ethical Issues in Colonizing and Terraforming Mars 124 8.3 Ethics of Human Enhancement for Space 125 8.4 Environmental Ethics in Space 125 8.5 Political Issues in Colonizing and Terraforming Mars 127 8.6 Legal Issues in Colonizing and Terraforming Mars 128 8.7 Sexual and Reproductive Laws in a Mars Colony 129 8.8 Migration Law in Space 130 8.9 Why Terraforming Mars May Be Necessary from Ethical, Political and Legal Perspectives 132 8.10 Conclusions 133 References 133 Part 4: Indigenous Life on Mars 135 9 Life on Mars: Past, Present, and Future 137 Martin Beech and Mark Comte 9.1 A Very Brief Historical Introduction 137 9.2 Indigenous Life: Past and Present 141 9.2.1 Beginnings 145 9.2.2 The Viking Experiments 148 9.2.3 Martian Meteorites 149 9.2.4 In Plain Sight 151 9.3 Seeded Life: The Future 154 9.4 Per Aspera ad Astra 156 References 157 10 Terraforming on Early Mars? 161 M. Polgári, I. Gyollai and Sz. Bérczi 10.1 Introduction 162 10.1.1 Aspects of Biogenicity 163 10.1.2 Methodology 163 10.1.3 Multihierarchical System Analyses 164 10.2 Outline of Section 10.2 167 10.2.1 Review of Research on Martian Life 167 10.2.2 Biosignatures in Martian Meteorites Based on Mineralogical and Textural Investigation 169 10.2.3 Biosignatures in Chondritic Meteorites 169 10.2.3.1 Interpretations 175 10.2.3.2 Clay Formation 182 10.2.3.3 Interpretation No. 1 183 10.2.3.4 Interpretation No. 2 (Preferred) 183 10.2.4 Terrestrial Analogues of Biosignatures 186 10.2.5 Implications to Terraforming of Ancient Life on Mars on the Basis of Terrestrial and Meteoritic Analogues 199 10.3 Novel Interpretation of the Formation Process Based on Mineral Assemblages 265 10.3.1 Martian Meteorites 265 10.3.2 Interpretation of Mineral Assemblages on Mars 265 10.3.3 Novel Interpretation of Mineral Dataset of Exploration of Curiosity in Gale Crater 267 10.4 Conclusion 268 Acknowledgment 270 References 270 Part 5: Living on Mars 281 11 Omaha Field - A Magnetostatic Cosmic Radiation Shield for a Crewed Mars Facility 283 Gary Stewart 11.1 Introduction 283 11.2 Methods 284 11.2.1 Software 284 11.2.2 Testing 284 11.3 Design 284 11.3.1 Crater 284 11.3.2 Current 285 11.3.3 Circuits 287 11.4 Results 288 11.4.1 Shielding Against 500 MeV Protons 288 11.4.2 Shielding Against 1 GeV Protons 289 11.4.3 Shielding Effectiveness in the Mars Environment 290 11.5 Discussion 291 11.5.1 Electrostatics 291 11.5.2 Refrigeration 291 11.5.3 Self-Shielding Solenoids 292 11.5.4 Alternate Self-Shielding and Source-Shielding 293 11.5.5 Safety in Transit Across Crater Rim 294 11.5.6 Safety in Spacecraft Launch and Landing 295 References 295 12 Mars Future Settlements: Active Radiation Shielding and Design Criteria About Habitats and Infrastructures 297 Marco Peroni 12.1 Introduction 297 12.2 The Problem of Cosmic Radiations 298 12.3 The Protection System with Artificial Magnetic Fields 299 12.4 Details of Our Proposal 302 12.5 Further Developments 309 12.6 Modular Settlement on Mars 309 Acknowledgments 312 References 312 13 Crop Growth and Viability of Seeds on Mars and Moon Soil Simulants 313 G.W.W. Wamelink, J.Y. Frissel, W.H.J. Krijnen and M.R. Verwoert 13.1 Introduction 313 13.2 Materials and Methods 314 13.2.1 Regoliths 314 13.2.2 Species Selection 315 13.2.3 Organic Matter and Bacteria 316 13.2.4 Experimental Design 317 13.2.5 Harvest and Measurements 317 13.3 Results 318 13.3.1 Fruit Setting and Biomass 318 13.3.2 Seed Weight and Germination 318 13.4 Discussion 319 13.5 Outlook Issues for the Future 320 Acknowledgements 322 References 322 Appendix 324 14 The First Settlement of Mars 331 Chris Hajduk 14.1 Introduction 331 14.2 Colony Location 332 14.3 Colony Timeline 333 14.3.1 Setup Phase 333 14.3.2 Investment Phase 334 14.3.3 Self-Sufficiency 335 14.4 Colony Design 335 14.5 The Basics - Power, Air, Water, Food 336 14.5.1 Food 336 14.5.2 Water 339 14.5.3 Air 341 14.5.4 Power 342 14.6 The Material World 343 14.6.1 Metals 344 14.6.2 Plastics 344 14.6.3 Ceramics and Composites 344 14.6.4 Mining 344 14.7 Exports, Economics, Investment and Cash Flow 346 14.7.1 Interplanetary Real Estate 346 14.7.2 Intellectual Property Export 347 14.7.3 Research Tourism 347 14.7.4 Investment and Cash Flow 347 14.8 Politics - A Socialist's World 349 14.9 Conclusion and Further Thoughts 349 References 349 Part 6: In Situ Resources 353 15 Vulcanism on Mars 355 Ian M. Coulson 15.1 Introduction 355 15.2 Martian Geology 356 15.2.1 Mars: Creation and Thermal Evolution 357 15.2.2 The Martian Crust 358 15.3 Vulcanism 358 15.3.1 Types of Volcanoes 359 15.3.1.1 Earth 359 15.3.1.2 Mars 361 15.3.2 Recognition of Other Styles of Vulcanism 363 15.3.3 Martian Meteorites 364 15.3.4 Is Mars Still Volcanically Active? 366 References 367 16 Potential Impact-Related Mineral Resources on Mars 371 Jake R. Crandall, Justin Filiberto and Sally L. Potter-McIntyre Introduction 371 Terrestrial Ore Deposit Types Associated with Impact Craters 374 Progenetic Deposits 374 Syngenetic Deposits 376 Epigenetic Deposits 377 Martian Target Craters 377 Ritchey Crater 377 Contents xi Gale Crater 378 Gusev Crater 380 Conclusions 381 References 382 17 Red Gold - Practical Methods for Precious-Metal Survey, Open-Pit Mining, and Open-Air Refining on Mars 389 Gary Stewart 17.1 Introduction 389 17.2 Martian Precious-Metal Ore from Asteroids 390 17.3 Martian Precious-Metal Survey and Physical Assay 392 17.4 "Mars Base Alpha" - A Red Gold Mining Camp 394 17.5 Semi-Autonomous Open-Pit Mining 396 17.6 Comminution and Separation of Meteorite Ore 396 17.7 Extracting Metals with Induction/Microwave Smelter 397 17.8 Refining with Hydrometallurgical Recovery and the Miller Process 398 17.9 Separating Precious Metals with Saltwater Electrolysis 400 17.10 Kovar Foundry 400 17.11 Maximizing ISRU, Minimizing Mass and Complexity 402 17.12 Scale-Up and Scale-Out 405 17.13 Conclusion, with Observations and Recommendations 407 References 409 Part 7: Terraforming Mars 415 18 Terraforming Mars: A Cabinet of Curiosities 417 Martin Beech 18.1 Introduction and Overview 417 18.2 Planet Mars: A Brief Observational History and Overview 425 18.3 The Beginnings of Change 428 18.4 The Foundations 431 18.5 First Blush 438 18.6 Digging In 441 18.7 (re)Building the Martian Atmosphere 446 18.8 Magnetic Shielding 454 18.9 Heating the Ground 457 18.10 A Question of Time 458 18.11 Conclusions 460 References 461 19 Terraforming Mars Rapidly Using Today's Level of Technology 467 Mark Culaj 19.1 Introduction 467 19.2 Solar Wind 468 19.2.1 Solar Wind Abundances 469 19.2.2 Magnetic Lens 469 19.3 Conclusions 475 Acknowledgments 477 References 477 20 System Engineering Analysis of Terraforming Mars with an Emphasis on Resource Importation Technology 479 Brandon Wong 20.1 Summary 479 20.2 Introduction 480 20.3 Key Problem 482 20.4 Key Stakeholders 482 20.5 Goals 483 20.6 Macro Level Alternatives 483 20.6.1 Terraforming 483 20.6.2 Paraterraforming 484 20.6.3 Bioforming 485 20.7 Macro-Level Trade Study 486 20.8 Macro-Level Conclusions 487 20.8.1 Concept of Operations 487 20.8.2 High-Level Requirements 487 20.8.3 Requirements Decomposition 487 20.8.4 Macro High-Level Design 488 20.9 Terraforming Efforts System - Detailed Requirements 489 20.10 Space Transportation System 492 20.11 Importing Resources Subsystem 492 20.11.1 Resources Needed 492 20.11.2 Resource Locations 493 20.11.3 Subsystem Needs 494 20.11.3.1 Subsystem Goals for Importing Resources Subsystem 494 20.11.3.2 Detailed Requirements for Importing Resources Subsystem 494 20.11.3.3 Alternatives for the Importing Resources Subsystem 495 20.11.3.4 Importing Resources Trade Study 504 20.11.3.5 Findings 506 20.11.3.6 Importing Resources Subsystem Design 506 20.12 Risks 507 20.12.1 Macro-Level Risks 507 20.12.2 Importing Resources Subsystem Risks 509 20.13 Lean Strategies 511 20.14 Ethical Considerations 512 20.15 Overall Conclusions 513 20.15.1 Proposed Implementation Plan 513 20.16 Acknowledgements 514 20.17 Appendix 514 20.17.1 Requirements Flowdown to System Implementation 514 References 530 21 The Potential of Pioneer Lichens in Terraforming Mars 533 Richard A. Armstrong 21.1 Introduction 533 21.2 Potential Role of Lichens in Terraformation 534 21.3 Exploiting Indigenous Lichens 536 21.4 Exploiting Lichen Symbionts on Mars 538 21.5 Inoculating Lichen Symbionts from Earth Cultures 540 21.6 Transplanting Terrestrial Lichens to Mars 541 21.7 Conclusions 546 References 547 Index 555

Notă biografică

Martin Beech, PhD is Professor Emeritus at the University of Regina, and Campion College, Saskatchewan, Canada. He has conducted and published research in the many areas of astronomy, planetary science, and the history of science. His main astronomy research interests are in the area of small solar system bodies (asteroids, comets, meteoroids, and meteorites). Professor J. Seckbach, PhD is a retired senior academician at The Hebrew University of Jerusalem, Israel. He earned his PhD from the University of Chicago and did a post-doctorate in the Division of Biology at Caltech, in Pasadena, CA. He served at Louisiana State University (LSU), Baton Rouge, LA, USA, as the first selected Chair for the Louisiana Sea Grant and Technology transfer. Professor Joseph Seckbach has edited over 40 scientific books and authored about 140 scientific articles. Richard Gordon, PhD is a theoretical biologist and retired from the Department of Radiology, University of Manitoba in 2011. Presently at Gulf Specimen Marine Lab & Aquarium, Panacea, Florida and Adjunct Professor, C.S. Mott Center for Human Growth & Development, Department of Obstetrics & Gynecology, Wayne State University, Detroit Michigan. Interest in exobiology (now astrobiology) dates from 1960s undergraduate work on organic matter in the Orgueil meteorite with Edward Anders. Has published critical reviews of panspermia and the history of discoveries of life in meteorites.