Cantitate/Preț
Produs

The Art of Reinforcement Learning: Fundamentals, Mathematics, and Implementations with Python

Autor Michael Hu
en Limba Engleză Paperback – 9 dec 2023
Unlock the full potential of reinforcement learning (RL), a crucial subfield of Artificial Intelligence, with this comprehensive guide. This book provides a deep dive into RL's core concepts, mathematics, and practical algorithms, helping you to develop a thorough understanding of this cutting-edge technology.
Beginning with an overview of fundamental concepts such as Markov decision processes, dynamic programming, Monte Carlo methods, and temporal difference learning, this book uses clear and concise examples to explain the basics of RL theory. The following section covers value function approximation, a critical technique in RL, and explores various policy approximations such as policy gradient methods and advanced algorithms like Proximal Policy Optimization (PPO). This book also delves into advanced topics, including distributed reinforcement learning, curiosity-driven exploration, and the famous AlphaZero algorithm, providing readers with a detailed account of these cutting-edge techniques.
With a focus on explaining algorithms and the intuition behind them, The Art of Reinforcement Learning includes practical source code examples that you can use to implement RL algorithms. Upon completing this book, you will have a deep understanding of the concepts, mathematics, and algorithms behind reinforcement learning, making it an essential resource for AI practitioners, researchers, and students.
What You Will Learn
  • Grasp fundamental concepts and distinguishing features of reinforcement learning, including how it differs from other AI and non-interactive machine learning approaches
  • Model problems as Markov decision processes, and how to evaluate and optimize policies using dynamic programming, Monte Carlo methods, and temporal difference learning
  • Utilize techniques for approximating value functions and policies, including linear and nonlinear value function approximation and policy gradient methods
  • Understand the architecture and advantages of distributed reinforcement learning
  • Master the concept of curiosity-driven exploration and how it can be leveraged to improve reinforcement learning agents
  • Explore the AlphaZero algorithm and how it was able to beat professional Go players
 Who This Book Is ForMachine learning engineers, data scientists, software engineers, and developers who want to incorporate reinforcement learning algorithms into their projects and applications.
Citește tot Restrânge

Preț: 27359 lei

Preț vechi: 34199 lei
-20% Nou

Puncte Express: 410

Preț estimativ în valută:
5236 5524$ 4364£

Carte disponibilă

Livrare economică 12-26 decembrie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781484296059
ISBN-10: 1484296052
Pagini: 287
Ilustrații: XVII, 287 p. 122 illus., 75 illus. in color.
Dimensiuni: 178 x 254 mm
Greutate: 0.54 kg
Ediția:First Edition
Editura: Apress
Colecția Apress
Locul publicării:Berkeley, CA, United States

Cuprins

Part I: Foundation.- Chapter 1: Introduction to Reinforcement Learning.- Chapter 2: Markov Decision Processes.- Chapter 3: Dynamic Programming.- Chapter 4: Monte Carlo Methods.- Chapter 5: Temporal Difference Learning.- Part II: Value Function Approximation.- Chapter 6: Linear Value Function Approximation.- Chapter 7: Nonlinear Value Function Approximation.- Chapter 8: Improvement to DQN.-  Part III: Policy Approximation.- Chapter 9: Policy Gradient Methods.- Chapter 10: Problems with Continuous Action Space.- Chapter 11: Advanced Policy Gradient Methods.-  Part IV: Advanced Topics.- Chapter 12: Distributed Reinforcement Learning.- Chapter 13: Curiosity-Driven Exploration.- Chapter 14: Planning with a Model – AlphaZero.

Notă biografică

Michael Hu is a skilled software engineer with over a decade of experience in designing and implementing enterprise-level applications. He's a passionate coder who loves to delve into the world of mathematics and has a keen interest in cutting-edge technologies like machine learning and deep learning, with a particular interest in deep reinforcement learning. He has build various open-source projects on Github, which closely mimic the state-of-the-art reinforcement learning algorithms developed by DeepMind, such as AlphaZero, MuZero, and Agent57. Fluent in both English and Chinese, Michael currently resides in the bustling city of Shanghai, China.

Textul de pe ultima copertă

Unlock the full potential of reinforcement learning (RL), a crucial subfield of Artificial Intelligence, with this comprehensive guide. This book provides a deep dive into RL's core concepts, mathematics, and practical algorithms, helping you to develop a thorough understanding of this cutting-edge technology. Beginning with an overview of fundamental concepts such as Markov decision processes, dynamic programming, Monte Carlo methods, and temporal difference learning, this book uses clear and concise examples to explain the basics of RL theory. The following section covers value function approximation, a critical technique in RL, and explores various policy approximations such as policy gradient methods and advanced algorithms like Proximal Policy Optimization (PPO).
This book also delves into advanced topics, including distributed reinforcement learning, curiosity-driven exploration, and the famous AlphaZero algorithm, providing readers with a detailed account of these cutting-edge techniques.
With a focus on explaining algorithms and the intuition behind them, The Art of Reinforcement Learning includes practical source code examples that you can use to implement RL algorithms. Upon completing this book, you will have a deep understanding of the concepts, mathematics, and algorithms behind reinforcement learning, making it an essential resource for AI practitioners, researchers, and students.
You will:
  • Grasp fundamental concepts and distinguishing features of reinforcement learning, including how it differs from other AI and non-interactive machine learning approaches
  • Model problems as Markov decision processes, and how to evaluate and optimize policies using dynamic programming, Monte Carlo methods, and temporal difference learning
  • Utilize techniques for approximating value functions and policies, including linear and nonlinear value function approximation and policy gradient methods
  • Understand the architecture and advantages of distributed reinforcement learning
  • Master the concept of curiosity-driven exploration and how it can be leveraged to improve reinforcement learning agents
  • Explore the AlphaZero algorithm and how it was able to beat professional Go players

Caracteristici

Provides a concise introduction to reinforcement learning, making it accessible to those new to the field Uses practical examples to illustrate how theory is applied in practice Breadth of coverage makes this book a valuable resource for beginners and more experienced practitioners