The Best Approximation Method An Introduction: Lecture Notes in Engineering, cartea 27
Autor Theodore V. II Hromadka, Chung-Cheng Yen, George F. Pinderen Limba Engleză Paperback – 31 mar 1987
Din seria Lecture Notes in Engineering
- 15% Preț: 606.60 lei
- 15% Preț: 609.40 lei
- 15% Preț: 599.32 lei
- 18% Preț: 1050.46 lei
- 15% Preț: 603.96 lei
- 15% Preț: 605.20 lei
- 15% Preț: 604.28 lei
- 15% Preț: 602.43 lei
- 15% Preț: 604.14 lei
- 18% Preț: 906.52 lei
- Preț: 376.18 lei
- 15% Preț: 619.30 lei
- 15% Preț: 604.88 lei
- 15% Preț: 601.34 lei
- 15% Preț: 610.19 lei
- 15% Preț: 601.64 lei
- 15% Preț: 604.28 lei
- 15% Preț: 599.80 lei
- 15% Preț: 619.30 lei
- 15% Preț: 616.68 lei
- 20% Preț: 611.26 lei
- 15% Preț: 605.37 lei
- 15% Preț: 599.80 lei
- 15% Preț: 620.56 lei
- 15% Preț: 618.06 lei
- 15% Preț: 618.37 lei
- 15% Preț: 609.54 lei
- 15% Preț: 604.57 lei
- 20% Preț: 606.71 lei
- 15% Preț: 639.92 lei
- 15% Preț: 605.85 lei
- 15% Preț: 608.30 lei
- 15% Preț: 604.75 lei
- Preț: 411.33 lei
- 15% Preț: 608.78 lei
- 15% Preț: 613.12 lei
- 15% Preț: 621.32 lei
- 15% Preț: 630.61 lei
- Preț: 390.04 lei
- Preț: 385.46 lei
- 15% Preț: 601.20 lei
- 15% Preț: 616.53 lei
- 18% Preț: 922.95 lei
- 15% Preț: 608.78 lei
- 15% Preț: 601.82 lei
- 15% Preț: 606.60 lei
- 15% Preț: 602.88 lei
- 20% Preț: 624.81 lei
- 15% Preț: 617.15 lei
Preț: 602.88 lei
Preț vechi: 709.26 lei
-15% Nou
Puncte Express: 904
Preț estimativ în valută:
115.42€ • 125.05$ • 96.38£
115.42€ • 125.05$ • 96.38£
Carte tipărită la comandă
Livrare economică 12-26 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540175728
ISBN-10: 3540175725
Pagini: 188
Ilustrații: XIV, 172 p.
Dimensiuni: 170 x 244 x 10 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1987
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Engineering
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540175725
Pagini: 188
Ilustrații: XIV, 172 p.
Dimensiuni: 170 x 244 x 10 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1987
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Engineering
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Work Spaces.- 1.1. Metric Spaces.- 1.2. Linear Spaces.- 1.3. Normed Linear Spaces.- 1.4. Banach Spaces.- 2. Integration Theory.- 2.0. Introduction.- 2.1. The Riemann and Lebesgue Integrals: Step and Simple Functions.- 2.2. Lebesque Measure.- 2.3. Measurable Functions.- 2.4. The Lebesgue Integral.- 2.5. Key Theorems in Integration Theory.- 2.6. Lp Spaces.- 2.7. The Metric Space, Lp.- 2.8. Convergence of Sequences.- 2.9. Capsulation.- 3: Hilbert Space and Generalized Fourier Series.- 3.0 Introduction.- 3.1. Inner Product and Hilbert Space (Finite Dimension Spaces).- 3.2. Infinite Dimension Spaces.- 3.3. Approximations in L2(E).- 3.4. Vector Space Representation for Approximations: An Application.- 4. Linear Operators.- 4.0. Introduction.- 4.1. The Derivative as a Linear Operator.- 4.2. Linear Operators.- 4.3. Examples of Linear Operators in Engineering.- 4.4. Linear Operator Norms.- 5. The Best Approximation Method.- 5.0. Introduction.- 5.1. An Inner Product for the Solution of Linear Operator Equations.- 5.2. Orthonormalization Process.- 5.3. Generalized Fourier Series.- 5.4. Approximation Error Evaluation.- 5.5. The Weighted Inner Product.- 6. The Best Approximation Method: Applications.- 6.0. Introduction.- 6.1. Sensitivity of Computational Results to Variation in the Inner Product Weighting Factor.- 6.2. Solving Two-Dimensional Potential Problems.- 6.3. Application to Other Linear Operators.- 6.4. Computer Program: Two-Dimensional Potential Problems Using Real Variable Basis Functions.- 7. Coupling the Best Approximation and Complex Variable Boundary Element Methods.- 7.0. Introduction.- 7.1. The Complex Variable Boundary Element Method.- 7.2. Mathematical Development.- 7.3. The CVBEM and W?.- 7.4. The Space W?A.- 7.5. Applications.- 7.6. Computer Program:Two-Dimensional Potential Problems Using Analytic Basis Functions (CVBEM).- References.- Appendix A: Derivation of CVBEM Approximation Function.- Appendix B: Convergence of CVBEM Approximator.