The Best Approximation Method An Introduction: Lecture Notes in Engineering, cartea 27
Autor Theodore V. II Hromadka, Chung-Cheng Yen, George F. Pinderen Limba Engleză Paperback – 31 mar 1987
Din seria Lecture Notes in Engineering
- 15% Preț: 640.37 lei
- 15% Preț: 643.34 lei
- 15% Preț: 632.70 lei
- 18% Preț: 1109.16 lei
- 15% Preț: 637.59 lei
- 15% Preț: 638.89 lei
- 15% Preț: 637.93 lei
- 15% Preț: 635.96 lei
- 15% Preț: 637.78 lei
- 18% Preț: 957.13 lei
- Preț: 397.01 lei
- 15% Preț: 653.79 lei
- 15% Preț: 638.57 lei
- 15% Preț: 634.82 lei
- 15% Preț: 644.18 lei
- 15% Preț: 635.15 lei
- 15% Preț: 637.93 lei
- 15% Preț: 633.19 lei
- 15% Preț: 653.79 lei
- 15% Preț: 651.02 lei
- 20% Preț: 645.31 lei
- 15% Preț: 639.08 lei
- 15% Preț: 633.19 lei
- 15% Preț: 655.13 lei
- 15% Preț: 652.49 lei
- 15% Preț: 652.81 lei
- 15% Preț: 643.48 lei
- 15% Preț: 638.24 lei
- 20% Preț: 640.51 lei
- 15% Preț: 675.58 lei
- 15% Preț: 639.59 lei
- 15% Preț: 642.18 lei
- 15% Preț: 638.43 lei
- Preț: 434.12 lei
- 15% Preț: 642.68 lei
- 15% Preț: 647.27 lei
- 15% Preț: 655.92 lei
- 15% Preț: 665.73 lei
- Preț: 411.64 lei
- Preț: 406.80 lei
- 15% Preț: 634.68 lei
- 15% Preț: 650.86 lei
- 18% Preț: 974.49 lei
- 15% Preț: 642.68 lei
- 15% Preț: 635.31 lei
- 15% Preț: 640.37 lei
- 15% Preț: 636.45 lei
- 20% Preț: 659.63 lei
- 15% Preț: 651.51 lei
Preț: 636.45 lei
Preț vechi: 748.76 lei
-15% Nou
Puncte Express: 955
Preț estimativ în valută:
121.80€ • 126.09$ • 102.95£
121.80€ • 126.09$ • 102.95£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540175728
ISBN-10: 3540175725
Pagini: 188
Ilustrații: XIV, 172 p.
Dimensiuni: 170 x 244 x 10 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1987
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Engineering
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540175725
Pagini: 188
Ilustrații: XIV, 172 p.
Dimensiuni: 170 x 244 x 10 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1987
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Engineering
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Work Spaces.- 1.1. Metric Spaces.- 1.2. Linear Spaces.- 1.3. Normed Linear Spaces.- 1.4. Banach Spaces.- 2. Integration Theory.- 2.0. Introduction.- 2.1. The Riemann and Lebesgue Integrals: Step and Simple Functions.- 2.2. Lebesque Measure.- 2.3. Measurable Functions.- 2.4. The Lebesgue Integral.- 2.5. Key Theorems in Integration Theory.- 2.6. Lp Spaces.- 2.7. The Metric Space, Lp.- 2.8. Convergence of Sequences.- 2.9. Capsulation.- 3: Hilbert Space and Generalized Fourier Series.- 3.0 Introduction.- 3.1. Inner Product and Hilbert Space (Finite Dimension Spaces).- 3.2. Infinite Dimension Spaces.- 3.3. Approximations in L2(E).- 3.4. Vector Space Representation for Approximations: An Application.- 4. Linear Operators.- 4.0. Introduction.- 4.1. The Derivative as a Linear Operator.- 4.2. Linear Operators.- 4.3. Examples of Linear Operators in Engineering.- 4.4. Linear Operator Norms.- 5. The Best Approximation Method.- 5.0. Introduction.- 5.1. An Inner Product for the Solution of Linear Operator Equations.- 5.2. Orthonormalization Process.- 5.3. Generalized Fourier Series.- 5.4. Approximation Error Evaluation.- 5.5. The Weighted Inner Product.- 6. The Best Approximation Method: Applications.- 6.0. Introduction.- 6.1. Sensitivity of Computational Results to Variation in the Inner Product Weighting Factor.- 6.2. Solving Two-Dimensional Potential Problems.- 6.3. Application to Other Linear Operators.- 6.4. Computer Program: Two-Dimensional Potential Problems Using Real Variable Basis Functions.- 7. Coupling the Best Approximation and Complex Variable Boundary Element Methods.- 7.0. Introduction.- 7.1. The Complex Variable Boundary Element Method.- 7.2. Mathematical Development.- 7.3. The CVBEM and W?.- 7.4. The Space W?A.- 7.5. Applications.- 7.6. Computer Program:Two-Dimensional Potential Problems Using Analytic Basis Functions (CVBEM).- References.- Appendix A: Derivation of CVBEM Approximation Function.- Appendix B: Convergence of CVBEM Approximator.