The Computational Complexity of Differential and Integral Equations: An Information-Based Approach: Oxford Mathematical Monographs
Autor Arthur G. Werschulzen Limba Engleză Hardback – 28 aug 1991
Din seria Oxford Mathematical Monographs
- 33% Preț: 497.12 lei
- 29% Preț: 847.15 lei
- 34% Preț: 876.91 lei
- 29% Preț: 848.38 lei
- 31% Preț: 954.36 lei
- 31% Preț: 1054.91 lei
- 34% Preț: 813.98 lei
- 23% Preț: 2340.60 lei
- 31% Preț: 402.63 lei
- 34% Preț: 1343.12 lei
- 34% Preț: 1280.46 lei
- 34% Preț: 1004.61 lei
- 34% Preț: 528.21 lei
- 34% Preț: 827.16 lei
- 39% Preț: 492.56 lei
- 34% Preț: 591.54 lei
- 34% Preț: 493.36 lei
- 34% Preț: 1257.27 lei
- 34% Preț: 1466.46 lei
- 18% Preț: 678.33 lei
- 34% Preț: 1025.31 lei
- 34% Preț: 1465.58 lei
- 34% Preț: 1249.30 lei
- 34% Preț: 989.13 lei
- 31% Preț: 407.68 lei
- 30% Preț: 965.60 lei
- 34% Preț: 1591.45 lei
- 30% Preț: 1597.13 lei
- 34% Preț: 527.27 lei
- 34% Preț: 873.61 lei
- 23% Preț: 1507.46 lei
- 23% Preț: 922.53 lei
- 26% Preț: 943.01 lei
- 34% Preț: 1546.68 lei
- 31% Preț: 356.67 lei
- 23% Preț: 1749.46 lei
- 34% Preț: 1401.56 lei
- 30% Preț: 874.23 lei
- 17% Preț: 357.06 lei
- 31% Preț: 322.69 lei
- 34% Preț: 1496.00 lei
- 34% Preț: 1122.66 lei
- 25% Preț: 845.00 lei
- 30% Preț: 819.57 lei
- 34% Preț: 1008.29 lei
- 34% Preț: 504.75 lei
- 31% Preț: 1418.15 lei
- 34% Preț: 1228.64 lei
- 39% Preț: 598.73 lei
Preț: 428.69 lei
Nou
Puncte Express: 643
Preț estimativ în valută:
82.04€ • 85.22$ • 68.15£
82.04€ • 85.22$ • 68.15£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780198535898
ISBN-10: 0198535899
Pagini: 342
Dimensiuni: 164 x 241 x 25 mm
Greutate: 0.7 kg
Editura: OUP OXFORD
Colecția OUP Oxford
Seria Oxford Mathematical Monographs
Locul publicării:Oxford, United Kingdom
ISBN-10: 0198535899
Pagini: 342
Dimensiuni: 164 x 241 x 25 mm
Greutate: 0.7 kg
Editura: OUP OXFORD
Colecția OUP Oxford
Seria Oxford Mathematical Monographs
Locul publicării:Oxford, United Kingdom
Cuprins
Introduction; EXAMPLE: A TWO-POINT BOUNDARY VALUE PROBLEM: Introduction; Error, cost, and complexity; A minimal error algorithm; Complexity bounds; Comparison with the finite element method; Standard information; Final remarks; GENERAL FORMULATION: Introduction; Problem formulation; Information; Model of computation; Algorithms, their errors, and their costs; Complexity; Randomized setting; Asymptotic setting; THE WORST CASE SETTING: GENERAL RESULTS: Introduction; Radius and diameter; Complexity; Linear problems; The residual error criterion; ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS IN THE WORST CASE SETTING; Introduction; Variational elliptic boundary value problems; Problem formulation; The normed case with arbitrary linear information; The normed case with standard information; The seminormed case; Can adaption ever help?; OTHER PROBLEMS IN THE WORST CASE SETTING: Introduction; Linear elliptic systems; Fredholm problems of the second kind; Ill-posed problems; Ordinary differential equations; THE AVERAGE CASE SETTING: Introduction; Some basic measure theory; General results for the average case setting; Complexity of shift-invariant problems; Ill-posed problems; The probabilistic setting; COMPLEXITY IN THE ASYMPTOTIC AND RANDOMIZED SETTINGS: Introduction; Asymptotic setting; Randomized setting; Appendices; Bibliography.
Recenzii
'This book ... is a most welcome addition to the theoretical computer science and numerical analysis literature. Though it is intended as a summary of current research, it is of the quality that would make it an excellent textbook on the subject for advanced numerical analysis and computer science courses .. it reads easily and lucidly.'R.S. Andersen
'An excellent and accessible introduction to the complexity of basic arithmetic operations ... it adds an interesting new dimension to the study of numerical methods for the solution of PDEs.'Notices of the A.M.S.
'An excellent and accessible introduction to the complexity of basic arithmetic operations ... it adds an interesting new dimension to the study of numerical methods for the solution of PDEs.'Notices of the A.M.S.