The Fokker-Planck Equation: Methods of Solution and Applications: Springer Series in Synergetics, cartea 18
Autor Hannes Risken, Till Franken Limba Engleză Paperback – 17 sep 1996
Din seria Springer Series in Synergetics
- 15% Preț: 639.94 lei
- 17% Preț: 430.21 lei
- 17% Preț: 495.46 lei
- Preț: 384.49 lei
- Preț: 388.07 lei
- Preț: 392.05 lei
- Preț: 383.16 lei
- 15% Preț: 628.41 lei
- 18% Preț: 724.05 lei
- 15% Preț: 632.55 lei
- 15% Preț: 624.84 lei
- 18% Preț: 712.59 lei
- 20% Preț: 472.05 lei
- Preț: 390.14 lei
- 18% Preț: 727.93 lei
- 15% Preț: 634.32 lei
- Preț: 408.26 lei
- Preț: 389.77 lei
- Preț: 384.11 lei
- 15% Preț: 631.45 lei
- Preț: 379.22 lei
- 20% Preț: 574.08 lei
- Preț: 379.79 lei
- 15% Preț: 522.76 lei
- Preț: 388.07 lei
- Preț: 382.41 lei
- Preț: 384.49 lei
- Preț: 388.44 lei
- Preț: 399.96 lei
- 18% Preț: 1093.45 lei
- Preț: 389.77 lei
- 18% Preț: 951.95 lei
- 15% Preț: 631.27 lei
- Preț: 379.04 lei
- Preț: 390.14 lei
Preț: 527.11 lei
Preț vechi: 620.13 lei
-15% Nou
Puncte Express: 791
Preț estimativ în valută:
100.91€ • 105.04$ • 83.07£
100.91€ • 105.04$ • 83.07£
Carte tipărită la comandă
Livrare economică 31 ianuarie-14 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540615309
ISBN-10: 354061530X
Pagini: 488
Ilustrații: XIV, 472 p. 3 illus.
Dimensiuni: 170 x 242 x 26 mm
Greutate: 0.71 kg
Ediția:2nd ed. 1996
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Synergetics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 354061530X
Pagini: 488
Ilustrații: XIV, 472 p. 3 illus.
Dimensiuni: 170 x 242 x 26 mm
Greutate: 0.71 kg
Ediția:2nd ed. 1996
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Synergetics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Introduction.- 1.1 Brownian Motion.- 1.2 Fokker-Planck Equation.- 1.3 Boltzmann Equation.- 1.4 Master Equation.- 2. Probability Theory.- 2.1 Random Variable and Probability Density.- 2.2 Characteristic Function and Cumulants.- 2.3 Generalization to Several Random Variables.- 2.4 Time-Dependent Random Variables.- 2.5 Several Time-Dependent Random Variables.- 3. Langevin Equations.- 3.1 Langevin Equation for Brownian Motion.- 3.2 Ornstein-Uhlenbeck Process.- 3.3 Nonlinear Langevin Equation, One Variable.- 3.4 Nonlinear Langevin Equations, Several Variables.- 3.5 Markov Property.- 3.6 Solutions of the Langevin Equation by Computer Simulation.- 4. Fokker-Planck Equation.- 4.1 Kramers-Moyal Forward Expansion.- 4.2 Kramers-Moyal Backward Expansion.- 4.3 Pawula Theorem.- 4.4 Fokker-Planck Equation for One Variable.- 4.5 Generation and Recombination Processes.- 4.6 Application of Truncated Kramers-Moyal Expansions.- 4.7 Fokker-Planck Equation for N Variables.- 4.8 Examples for Fokker-Planck Equations with Several Variables.- 4.9 Transformation of Variables.- 4.10 Covariant Form of the Fokker-Planck Equation.- 5. Fokker-Planck Equation for One Variable; Methods of Solution.- 5.1 Normalization.- 5.2 Stationary Solution.- 5.3 Ornstein-Uhlenbeck Process.- 5.4 Eigenfunction Expansion.- 5.5 Examples.- 5.6 Jump Conditions.- 5.7 A Bistable Model Potential.- 5.8 Eigenfunctions and Eigenvalues of Inverted Potentials.- 5.9 Approximate and Numerical Methods for Determining Eigenvalues and Eigenfunctions.- 5.10 Diffusion Over a Barrier.- 6. Fokker-Planck Equation for Several Variables; Methods of Solution.- 6.1 Approach of the Solutions to a Limit Solution.- 6.2 Expansion into a Biorthogonal Set.- 6.3 Transformation of the Fokker-Planck Operator, Eigenfunction Expansions.- 6.4 Detailed Balance.- 6.5 Ornstein-Uhlenbeck Process.- 6.6 Further Methods for Solving the Fokker-Planck Equation.- 7. Linear Response and Correlation Functions.- 7.1 Linear Response Function.- 7.2 Correlation Functions.- 7.3 Susceptibility.- 8. Reduction of the Number of Variables.- 8.1 First-Passage Time Problems.- 8.2 Drift and Diffusion Coefficients Independent of Some Variables.- 8.3 Adiabatic Elimination of Fast Variables.- 9. Solutions of Tridiagonal Recurrence Relations, Application to Ordinary and Partial Differential Equations.- 9.1 Applications and Forms of Tridiagonal Recurrence Relations.- 9.2 Solutions of Scalar Recurrence Relations.- 9.3 Solutions of Vector Recurrence Relations.- 9.4 Ordinary and Partial Differential Equations with Multiplicative Harmonic Time-Dependent Parameters.- 9.5 Methods for Calculating Continued Fractions.- 10. Solutions of the Kramers Equation.- 10.1 Forms of the Kramers Equation.- 10.2 Solutions for a Linear Force.- 10.3 Matrix Continued-Fraction Solutions of the Kramers Equation.- 10.4 Inverse Friction Expansion.- 11. Brownian Motion in Periodic Potentials.- 11.1 Applications.- 11.2 Normalization of the Langevin and Fokker-Planck Equations.- 11.3 High-Friction Limit.- 11.4 Low-Friction Limit.- 11.5 Stationary Solutions for Arbitrary Friction.- 11.6 Bistability between Running and Locked Solution.- 11.7 Instationary Solutions.- 11.8 Susceptibilities.- 11.9 Eigenvalues and Eigenfunctions.- 12. Statistical Properties of Laser Light.- 12.1 Semiclassical Laser Equations.- 12.2 Stationary Solution and Its Expectation Values.- 12.3 Expansion in Eigenmodes.- 12.4 Expansion into a Complete Set; Solution by Matrix Continued Fractions.- 12.5 Transient Solution.- 12.6 Photoelectron Counting Distribution.- Appendices.- A1 Stochastic Differential Equations with Colored Gaussian Noise.- A2 Boltzmann Equation with BGK and SW Collision Operators.- A3 Evaluation of a Matrix Continued Fraction for the Harmonic Oscillator.- A4 Damped Quantum-Mechanical Harmonic Oscillator.- A5 Alternative Derivation of the Fokker-Planck Equation.- A6 Fluctuating Control Parameter.- S. Supplement to the Second Edition.- S.1 Solutions of the Fokker-Planck Equation by Computer Simulation (Sect. 3.6).- S.2 Kramers-Moyal Expansion (Sect. 4.6).- S.3 Example for the Covariant Form of the Fokker-Planck Equation (Sect. 4.10).- S.4 Connection to Supersymmetry and Exact Solutions of the One Variable Fokker-Planck Equation (Chap. 5).- S.5 Nondifferentiability of the Potential for the Weak Noise Expansion (Sects. 6.6 and 6.7).- S.6 Further Applications of Matrix Continued-Fractions (Chap. 9).- S.7 Brownian Motion in a Double-Well Potential (Chaps. 10 and 11).- S.8 Boundary Layer Theory (Sect. 11.4).- S.9 Calculation of Correlation Times (Sect. 7.12).- S.10 Colored Noise (Appendix A1).- S.11 Fokker-Planck Equation with a Non-Positive-Definite Diffusion Matrix and Fokker-Planck Equation with Additional Third-Order-Derivative Terms.- References.
Textul de pe ultima copertă
This book deals with the derivation of the Fokker-Planck equation, methods of solving it and some of its applications. Various methods such as the simulation method, the eigenfunction expansion, numerical integration, the variational method, and the matrix continued-fraction method are discussed. This is the first time that this last method, which is very effective in dealing with simple Fokker-Planck equations having two variables, appears in a textbook. The methods of solution are applied to the statistics of a simple laser model and to Brownian motion in potentials. Such Brownian motion is important in solid-state physics, chemical physics and electric circuit theory. This new study edition is meant as a text for graduate students in physics, chemical physics, and electrical engineering.