The Foundations of Topological Graph Theory
Autor C.Paul Bonnington, Charles H.C. Littleen Limba Engleză Paperback – 5 oct 2011
Preț: 722.61 lei
Preț vechi: 881.23 lei
-18% Nou
Puncte Express: 1084
Preț estimativ în valută:
138.29€ • 144.19$ • 114.93£
138.29€ • 144.19$ • 114.93£
Carte tipărită la comandă
Livrare economică 21 martie-04 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461275732
ISBN-10: 1461275733
Pagini: 192
Ilustrații: IX, 178 p.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 1461275733
Pagini: 192
Ilustrații: IX, 178 p.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Introduction.- 1.1 Sets.- 1.2 Graphs.- 1.3 Subgraphs.- 1.4 Cocyeles.- 1.5 Forests, trees, circuits, and paths.- 1.6 Some elementary results.- 1.7 Theorems about trees.- 1.8 Spanning trees.- 1.9 Eulerian graphs.- 1.10 Bipartite graphs.- 1.11 Contractions.- 1.12 Menger’s theorem and n-connected graphs.- 1.13 2-connected graphs.- 1.14 Blocks.- 1.15 The cycle and cocycle spaces of a graph.- 1.16 Double covers.- 2 Maps.- 2.1 Permutations.- 2.2 Maps.- 2.3 Imbeddings of maps.- 2.4 3-graphs.- 2.5 From maps to gems and back again.- 2.6 Premaps.- 3 Classification of Surfaces.- 3.1 Dipoles.- 3.2 Reduced and unitary 3-graphs.- 3.3 Canonical gems.- 3.4 Planar graphs.- 4 Consistent and Coherent Orientations.- 4.1 Orientations.- 4.2 Pairwise coherently orientable nets.- 4.3 Families of circuits.- 4.4 Rings.- 5 Non-separating Curves in Surfaces.- 5.1 The main results and their topological implications.- 5.2 Permutation pairs.- 5.3 A condition for a b-cycle to separate.- 5.4 Fundamental sets of semicycles.- 6 Mac Lane’s Theorem for 3-Graphs.- 6.1 Congruence.- 6.2 Semicycle covers.- 6.3 Boundary covers.- 6.4 Partial congruence.- 6.5 Mac Lane’s theorem.- 6.6 Whitney’s characterisation.- 7 Kuratowski’s Theorem.- 7.1 Corollaries of Mac Lane’s theorem.- 7.2 Kuratowski’s theorem.- 7.3 Wagner’s theorem.- 8 Duality.- 8.1 Duals.- 8.2 Constructing orthogonal graphs.- 8.3 Duality for planar graphs.- 8.4 The zigzag space.- 8.5 The principal edge tripartition for planar graphs.- 8.6 Walks.- 8.7 Principal cycles and principal cocycles.- 8.8 Diagonals.- 8.9 Every planar graph has a diagonal.- 8.10 No non-planar graph has a diagonal.- 9 Rings of Bonds.- 9.1 Chordal graphs.- 9.2 Rings of bonds.- 10 Bridges.- 10.1 Residues and bridges.- 10.2 Tutte’s characterisation.- List of Symbols.