The Handbook of Graphene Electrochemistry
Autor Dale A. C. Brownson, Craig E. Banksen Limba Engleză Paperback – 3 sep 2016
This book charts the history of graphene, depicting how it has made an impact in the field of electrochemistry and how scientists are trying to unravel its unique properties, which has, surprisingly led to its fall from grace in some areas. A fundamental introduction into Graphene Electrochemistry is given, through which readers can acquire the tools required to effectively explain and interpret the vast array of graphene literature. The readers is provided with the appropriate insights required to be able to design and implement diligent electrochemical experiments when utilising graphene as an electrode material.
Preț: 602.88 lei
Preț vechi: 709.26 lei
-15% Nou
Puncte Express: 904
Preț estimativ în valută:
115.41€ • 125.72$ • 96.82£
115.41€ • 125.72$ • 96.82£
Carte tipărită la comandă
Livrare economică 18 decembrie 24 - 01 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781447171737
ISBN-10: 144717173X
Pagini: 213
Ilustrații: XII, 201 p. 126 illus., 40 illus. in color.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 2014
Editura: SPRINGER LONDON
Colecția Springer
Locul publicării:London, United Kingdom
ISBN-10: 144717173X
Pagini: 213
Ilustrații: XII, 201 p. 126 illus., 40 illus. in color.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 2014
Editura: SPRINGER LONDON
Colecția Springer
Locul publicării:London, United Kingdom
Cuprins
1 Introduction to graphene.- 2 Interpreting electrochemistry.- 3 The electrochemistry of graphene.- 4 Graphene applications.
Notă biografică
Craig E. Banks is an Associate Professor / Reader in nano and electrochemical technology at The Manchester Metropolitan University, Manchester UK. Craig has published >260 papers (h = 42); also 4 books, 14 book chapters and is the inventor of 17 patent families. Craig has spun out 2 companies from his research. He was awarded the RSC Harrison–Meldola Memorial Prize (2011) for his ‘contributions to the understanding of carbon materials, in particular graphene and its application as an electrode material’. Craig is also an Associate Editor of the RSC journal “Analytical Methods” and Honorary Professor at Xiangtan (湘潭大學) University. His interests lie in the pursuit of studying the fundamental understanding and applications of nano-electrochemical systems such as graphene, carbon nanotube and nanoparticle derived sensors and developing novel electrochemical sensors via screen printing and related techniques. Additionally his research peruses energy storage in the form of graphene based supercapactiors and Li and Na ion batteries.
Dale A. C. Brownson is a Research Associate in graphene engineering and graphene electrochemistry at The Manchester Metropolitan University, Manchester UK. He has published >25 papers (h = 12) and has contributed 2 book chapters. Dale received the RSC Ronald Belcher Award (2013) for ‘achievements towards the fundamental understanding of graphene as an electrode material and for contributions to the implications of this knowledge for the evolution of improved electroanalytical sensors’. Dale’s work has focused on expanding the horizons of graphene electrochemistry, which encompasses the exploration of fundamental understanding in addition to applications in sensing and energy related devices. In addition to his fundamental interests regarding fabricating and investigating 'advanced' carbon (nano)materials for beneficial implementation within electrochemical devices, his other research interestsinclude the forensic applications of chemistry.
Dale A. C. Brownson is a Research Associate in graphene engineering and graphene electrochemistry at The Manchester Metropolitan University, Manchester UK. He has published >25 papers (h = 12) and has contributed 2 book chapters. Dale received the RSC Ronald Belcher Award (2013) for ‘achievements towards the fundamental understanding of graphene as an electrode material and for contributions to the implications of this knowledge for the evolution of improved electroanalytical sensors’. Dale’s work has focused on expanding the horizons of graphene electrochemistry, which encompasses the exploration of fundamental understanding in addition to applications in sensing and energy related devices. In addition to his fundamental interests regarding fabricating and investigating 'advanced' carbon (nano)materials for beneficial implementation within electrochemical devices, his other research interestsinclude the forensic applications of chemistry.
Textul de pe ultima copertă
Graphene has grasped the attention of academia and industry world-wide due its unique structure and reported advantageous properties. This was reflected via the 2010 Nobel Prize in Physics being awarded for groundbreaking experiments regarding the two-dimensional material graphene. One particular area in which graphene has been extensively explored is electrochemistry where it is potentially the world’s thinnest electrode material. Graphene has been widely reported to perform beneficially over existing electrode materials when used within energy production or storage devices and when utilised to fabricate electrochemical sensors.
This book charts the history of graphene, depicting how it has made an impact in the field of electrochemistry and how scientists are trying to unravel its unique properties, which has, surprisingly led to its fall from grace in some areas. A fundamental introduction into Graphene Electrochemistry is given, through which readers can acquire the tools required to effectively explain and interpret the vast array of graphene literature. The readers is provided with the appropriate insights required to be able to design and implement diligent electrochemical experiments when utilising graphene as an electrode material.
This book charts the history of graphene, depicting how it has made an impact in the field of electrochemistry and how scientists are trying to unravel its unique properties, which has, surprisingly led to its fall from grace in some areas. A fundamental introduction into Graphene Electrochemistry is given, through which readers can acquire the tools required to effectively explain and interpret the vast array of graphene literature. The readers is provided with the appropriate insights required to be able to design and implement diligent electrochemical experiments when utilising graphene as an electrode material.
Caracteristici
Provides a comprehensive overview of the application of graphene in electrochemistry Offers the reader insights required to design and implement electrochemical experiments utilising graphene as an electrode material Presents the background of electrochemistry, making it accessible to not only postgraduate researchers, academics and industrialists, but also undergraduate students and those new to the field Includes supplementary material: sn.pub/extras