Cantitate/Preț
Produs

The Hyperbolic Cauchy Problem: Lecture Notes in Mathematics, cartea 1505

Autor Kunihiko Kajitani, Tatsuo Nishitani
en Limba Engleză Paperback – 13 dec 1991
The approach to the Cauchy problem taken here by the authorsis based on theuse of Fourier integral operators with acomplex-valued phase function, which is a time functionchosen suitably according to the geometry of the multiplecharacteristics. The correctness of the Cauchy problem inthe Gevrey classes for operators with hyperbolic principalpart is shown in the first part. In the second part, thecorrectness of the Cauchy problem for effectively hyperbolicoperators is proved with a precise estimate of the loss ofderivatives. This method can be applied to other (non)hyperbolic problems. The text is based on a course oflectures given for graduate students but will be of interestto researchers interested in hyperbolic partial differentialequations. In the latter part the reader is expected to befamiliar with some theory of pseudo-differential operators.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 27160 lei

Nou

Puncte Express: 407

Preț estimativ în valută:
5200 5415$ 4315£

Carte tipărită la comandă

Livrare economică 15 februarie-01 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540550181
ISBN-10: 3540550186
Pagini: 180
Ilustrații: VIII, 172 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.26 kg
Ediția:1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Fourier integral operators with complex-valued phase function and the Cauchy problem for hyperbolic operators.- The effectively hyperbolic Cauchy problem.