Cantitate/Preț
Produs

The Principle of Least Action in Geometry and Dynamics: Lecture Notes in Mathematics, cartea 1844

Autor Karl Friedrich Siburg
en Limba Engleză Paperback – 17 mai 2004
New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather’s minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 34622 lei

Nou

Puncte Express: 519

Preț estimativ în valută:
6627 6892$ 5553£

Carte tipărită la comandă

Livrare economică 14-28 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540219446
ISBN-10: 3540219447
Pagini: 148
Ilustrații: XII, 132 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.22 kg
Ediția:2004
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Aubry-Mather Theory.- Mather-Mané Theory.- The Minimal Action and Convex Billiards.- The Minimal Action Near Fixed Points and Invariant Tori.- The Minimal Action and Hofer's Geometry.- The Minimal Action and Symplectic Geometry.- References.- Index.

Caracteristici

Includes supplementary material: sn.pub/extras