Cantitate/Preț
Produs

The Probability Integral: Its Origin, Its Importance, and Its Calculation

Autor Paul J. Nahin
en Limba Engleză Hardback – 9 sep 2023
This book tells the story of the probability integral, the approaches to analyzing it throughout history, and the many areas of science where it arises. The so-called probability integral, the integral over the real line of a Gaussian function, occurs ubiquitously in mathematics, physics, engineering and probability theory. Stubbornly resistant to the undergraduate toolkit for handling integrals, calculating its value and investigating its properties occupied such mathematical luminaries as De Moivre, Laplace, Poisson, and Liouville. This book introduces the probability integral, puts it into a historical context, and describes the different approaches throughout history to evaluate and analyze it. The author also takes entertaining diversions into areas of math, science, and engineering where the probability integral arises: as well as being indispensable to probability theory and statistics, it also shows up naturally in thermodynamics and signal processing. Designed to be accessible to anyone at the undergraduate level and above, this book will appeal to anyone interested in integration techniques, as well as historians of math, science, and statistics.
Citește tot Restrânge

Preț: 35475 lei

Preț vechi: 40776 lei
-13% Nou

Puncte Express: 532

Preț estimativ în valută:
6791 6984$ 5634£

Carte disponibilă

Livrare economică 28 ianuarie-11 februarie
Livrare express 11-17 ianuarie pentru 3309 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031384158
ISBN-10: 3031384156
Pagini: 189
Ilustrații: XXX, 189 p. 34 illus. in color.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.49 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

Chapter 1. De Moivre and the Discovery of the Probability Integral.- Chapter 2. Laplace’s First Derivation.- Chapter 3. How Euler Could Have Done It Before Laplace (but  did he?).- Chapter 4. Laplace’s Second Derivation.- Chapter 5. Generalizing the Probability Integral.- Chapter 6. Poisson’s Derivation.- Chapter 7. Rice’s Radar Integral.- Chapter 8. Liouville’s Theorem that  Has No Finite Form.- Chapter 9. How the Error Function Appeared in the Electrical Response of the Trans-Atlantic Telegraph Cable.- Chapter 10. Doing the Probability Integral with Differentiation.- chapter 11. The Probability Integral as a Volume.- Chapter 12. How Cauchy Could Have Done It (but didn’t).- Chapter 13. Fourier Has the Penultimate Technical Word.- Chapter 14. Finbarr Holland Has the Last Technical Word.- Chapter 15. A Final Comment on Mathematical Proofs.


Notă biografică

Paul J. Nahin is professor emeritus of electrical engineering at the University of New Hampshire. He is the author of 21 books on mathematics, physics, and the history of science, published by Springer, and the university presses of Princeton and Johns Hopkins. He received the 2017 Chandler Davis Prize for Excellence in Expository Writing in Mathematics (for his paper “The Mysterious Mr. Graham,” The Mathematical Intelligencer, Spring 2016). He gave the invited 2011 Sampson Lectures in Mathematics at Bates College, Lewiston, Maine.

Textul de pe ultima copertă

This book tells the story of the probability integral, the approaches to analyzing it throughout history, and the many areas of science where it arises. The so-called probability integral, the integral over the real line of a Gaussian function, occurs ubiquitously in mathematics, physics, engineering and probability theory. Stubbornly resistant to the undergraduate toolkit for handling integrals, calculating its value and investigating its properties occupied such mathematical luminaries as De Moivre, Laplace, Poisson, and Liouville. This book introduces the probability integral, puts it into a historical context, and describes the different approaches throughout history to evaluate and analyze it. The author also takes entertaining diversions into areas of math, science, and engineering where the probability integral arises: as well as being indispensable to probability theory and statistics, it also shows up naturally in thermodynamics and signal processing. Designed to be accessibleto anyone at the undergraduate level and above, this book will appeal to anyone interested in integration techniques, as well as historians of math, science, and statistics.

Caracteristici

Shows how the probability integral naturally arises in statistics, physics, and signal processing Surveys the history of the probability integral, and the various approaches to analyzing it Written by a master expositor who combines rare insights with a lively, engaging style