Cantitate/Preț
Produs

The Stars: Astronomy and Astrophysics Library

Traducere de A.R. King Autor Evry L. Schatzman, Francoise Praderie
en Limba Engleză Paperback – 20 noi 2012
Following an introductory chapter on stellar fundamentals, the story begins of the lives and deaths of the stars. The authors take us on a journey from the sun, a comparatively young star, to supernovae - manifestations of dramatic death. On the way, the reader, advanced undergraduate or beginning postgraduate, is presented with such topics as stellar evolution, the hydrodynamics of stellar interiors, variability, and solar and stellar activity. This comprehensive but rigorous text, building on the theoretical and observational advances of recent years - for instance, astrophysical theory in the light of Supernova 1987A - is required reading for all serious students of astronomy.
Citește tot Restrânge

Din seria Astronomy and Astrophysics Library

Preț: 46486 lei

Preț vechi: 58107 lei
-20% Nou

Puncte Express: 697

Preț estimativ în valută:
8897 9264$ 7519£

Carte tipărită la comandă

Livrare economică 06-12 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662029374
ISBN-10: 3662029375
Pagini: 420
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Astronomy and Astrophysics Library

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Descriere

The year 1996 will see the seventieth anniversary of the publication of The Internal Constitution 01 the Stars by Sir Arthur Eddington. This book re­ mains a masterpiece, a classic in the astrophysical literature. In essence it proved that it was possible to construct a theory that made it possi­ ble to look inside the stars. However, theoretical astrophysics remained the province of a very small number of people for many years. Quite a few re­ markable textbooks have been published since, but there always remained the need to have a book, however incomplete, that took into account the fact that the study of the stars raises global problems. Whichever part of a star is studied, that part is of course connected to the rest of the star. Furthermore, all fields of physics are involved. The incredible increase in precision of astrophysical data and the wide variety of new types of ob­ servation (from neutrinos to asteroseismology) obliged researchers to take into account new physical processes and to improve their knowledge of basic physical processes (the equation of state, opacities, nuclear cross-sections, plasma physics and magnetohydrodynamics, to name just the most impor­ tant). Remember that astrophysics is first and foremost a science of observa­ tion. But theoretical developments are essential if we are to understand the observed phenomena.

Cuprins

1. Basic Stellar Data.- 1.1 Stellar Distances. Magnitudes.- 1.1.1 Primary Distance-Determination Methods.- 1.1.2 Secondary Distance-Determination Methods.- 1.1.3 The Magnitude Scale.- 1.1.4 Spectroscopic or Photometric Parallaxes.- 1.1.5 The Importance of Stellar Distance Determinations.- 1.2 Stellar Spectra.- 1.2.1 Continuum Spectrum of a Star.- 1.2.2 Line Spectra: Spectral Classification.- 1.2.3 Spectral-Line Analysis.- 1.3 Stellar Radii.- 1.3.1 Direct Measurement of the Radius.- 1.3.2 Radii of Eclipsing Binary Stars.- 1.3.3 Indirect Radius Determinations: The Infrared-Flux Method.- 1.3.4 Other Radius-Determination Methods.- 1.4 The Hertzsprung—Russell Diagram.- 1.4.1 The HR Diagram of Open Clusters.- 1.4.2 The HR Diagram of a Globular Cluster.- 1.4.3 Determination of Mv Revisited.- 1.5 Stellar Masses.- 1.5.1 Direct Mass Determination.- 1.5.2 The Mass—Luminosity Relation.- 1.6 Stellar Populations.- 1.6.1 Introduction.- 1.6.2 Defining Criteria for Stellar Populations.- 2. The Sun: The Nearest Star.- 2.1 Introduction.- 2.2 Models of the Solar Atmosphere.- 2.2.1 The Different Regions of an Atmosphere.- 2.2.2 Models of the Mean Solar Atmosphere.- 2.2.3 Radiative Losses.- 2.3 The Chemical Composition of the Solar Atmosphere.- 2.3.1 Methods of Finding Abundances.- 2.3.2 Results for the Solar Photosphere.- 2.3.3 Further Remarks.- 2.4 Fine Structure of the Quiet Solar Atmosphere.- 2.4.1 The Quiet Photosphere.- 2.4.2 The Quiet Chromosphere.- 2.4.3 The Quiet Transition Region.- 2.4.4 The Quiet Corona.- 2.5 Resolved Structure in the Active Sun.- 2.5.1 Sunspots and Active Regions.- 2.5.2 Prominences.- 2.5.3 Coronal Holes.- 2.5.4 Coronal Bright Points.- 2.6 Remarks.- 3. Stellar Evolution.- 3.1 Basic Internal Structure.- 3.1.1 Basic Observational Data.- 3.1.2 Basic Equations.- 3.1.3 Comparison with Observation.- 3.2 First Approximations: Orders of Magnitude.- 3.2.1 Polytropes.- 3.2.2 The Vogt—Russell Theorem.- 3.3 Stellar Structure: Basic Physics.- 3.3.1 The Equation of State.- 3.3.2 Opacity and Thermal Conductivity.- 3.3.3 Thermonuclear Reactions.- 3.3.4 Convection.- 3.4 Stellar Structure.- 3.4.1 Thermonuclear Reactions.- 3.4.2 The Nuclear Timescale.- 3.4.3 Homology.- 3.4.4 The Mass—Luminosity Relation.- 3.4.5 White Dwarfs.- 3.5 Stellar Evolution (The Standard Model).- 3.5.1 The Beginning of Stellar Evolution.- 3.6 The Sun.- 3.6.1 The Basic Model.- 3.6.2 Solar Neutrinos.- 3.6.3 The Solar-Neutrino Deficit.- 3.7 Evolution with Mass Loss.- 3.7.1 The Age of Globular Clusters.- 3.7.2 Intermediate-Mass Stars of Population I.- 3.7.3 Massive Stars (M ? 8M?).- 3.8 Evolution of Binary Stars.- 3.8.1 Introduction.- 3.8.2 Structure of Stars in Binaries.- 3.8.3 Mass Transfer.- 3.9 Evolution to the Main Sequence.- 4 Mass Loss and Stellar Winds.- 4.1 Introduction.- 4.2 Observational Data: General Remarks.- 4.3 Direct Data on Winds.- 4.3.1 The Sun.- 4.3.2 Red and Yellow Giants and Supergiants.- 4.3.3 Hot Stars (O, B, WR).- 4.3.4 Interpolation.- 4.4 Indirect Data on Winds.- 4.4.1 White Dwarfs.- 4.4.2 Supernovae.- 4.5 Generation of Mass Loss.- 4.5.1 The Sonic Point.- 4.5.2 Energy Constraints.- 4.5.3 Constraints on the Momentum.- 4.5.4 Driving Mechanisms.- 4.6 Heating Mechanisms.- 4.6.1 The Solar Wind.- 5. Hydrodynamics of the Stellar Interior: Convection and Rotation.- 5.1 Introduction.- 5.2 Convection.- 5.2.1 Physical Preliminaries.- 5.2.2 Modal Theory.- 5.3 The Theory of Convection Zones.- 5.3.1 Elementary Treatment of Convection.- 5.3.2 The Convective Regime.- 5.3.3 Convective Overshooting.- 5.3.4 Semi-convection.- 5.4 Circulation and Rotation.- 5.4.1 Von Zeipel’s Theorem.- 5.4.2 Circulation.- 5.4.3 Validity of the Assumptions.- 5.4.4 The Classical Solution (Sweet 1950).- 5.4.5 ? Currents and ? Currents.- 5.4.6 Instabilities.- 5.4.7 Stabilisation by a ? Gradient.- 5.4.8 Turbulence and Mixing.- 5.4.9 The Dynamo Effect.- 5.5 Observations and Interpretation.- 5.5.1 The Solar Granulation.- 5.5.2 Solar and Stellar Activity.- 5.5.3 Abundance of Trace Elements: Gravitational and Radiative Separation.- 5.5.4 Abundance of Trace Elements: Lithium Burning.- 5.5.5 Abundance of Trace Elements: Formation of the 13C Isotope.- 6. Variable Stars.- 6.1 Classification of Variable Stars.- 6.1.1 Inventory.- 6.1.2 Periodic Variables.- 6.1.3 Irregular or Semi-regular Variables.- 6.1.4 ? CMa Stars.- 6.1.5 Main-Sequence Stars.- 6.2 Periodic Pulsating Variables (RR Lyrae, Cepheids, Miras).- 6.2.1 Radial Velocity, the Light Curve.- 6.2.2 Phase Lag and the Cause of the Instability.- 6.2.3 The Period—Luminosity Relation.- 6.2.4 The First Harmonic and the Structure Parameter..- 6.2.5 The Red Edge of the Instability Strip.- 6.2.6 Masses of Pulsating Stars (Cepheids, RR Lyrae).- 6.2.7 Long-Period or Red Variables.- 6.2.8 ? Scuti Stars.- 6.3 Other Variables.- 6.3.1 ? CMa Stars.- 6.3.2 White Dwarfs.- 6.4 Variable Stars and Dynamical Systems.- 6.4.1 Variable Stars as Dynamical Systems.- 6.4.2 The One-Zone Model.- 6.4.3 The Moore—Spiegel Model (1966).- 6.4.4 A Schematic Red Variable.- 6.4.5 n-Zone Models.- 6.4.6 White Dwarfs of ZZ Ceti Type.- 6.5 Non-radial Oscillations.- 6.5.1 Modes of Oscillation.- 6.5.2 Observational Data.- 6.5.3 The Linear Theory of Non-radial Oscillations.- 7. Solar and Stellar Activity.- 7.1 Indicators of Activity.- 7.1.1 Sunspots and Starspots.- 7.1.2 Spectroscopic Activity Criteria in the Visible and Ultraviolet.- 7.1.3 X-rays.- 7.1.4 Radio Emission.- 7.2 Timescales of Magnetic Variability of the Sun and Stars.- 7.2.1 Rotational Modulation of Activity Indicators.- 7.2.2 Stellar Activity Cycles.- 7.3 Solar and Stellar Flares.- 7.3.1 Solar Flares.- 7.3.2 Stellar Flares.- 7.4 Stellar Magnetic Fields.- 7.4.1 Direct Measurements of the Magnetic Field.- 7.4.2 Indirect Methods of Measuring the Magnetic Field.- 7.4.3 Other Approaches.- 7.4.4 Sizes of Stellar Active Regions.- 7.5 Sources of Stellar Activity: Convection, Rotation, Primordial Fields (Empirical Aspects).- 7.5.1 Activity Indicators on the HR Diagram.- 7.5.2 Parameters Influencing Stellar Activity.- 8. The Last Stages of Stellar Evolution.- 8.1 Minimum-Energy States.- 8.2 The Physics of Minimum-Energy States.- 8.2.1 The Equation of State (T = 0).- 8.2.2 The Equation of State for T ? 0.- 8.2.3 Maximum Mass of White Dwarfs.- 8.2.4 The Maximum Mass of Neutron Stars.- 8.3 White Dwarfs.- 8.3.1 Properties.- 8.3.2 Evolution and Cooling.- 8.3.3 White Dwarfs in Binaries.- 8.3.4 Supernovae and White Dwarfs.- 8.4 Neutron Stars.- 8.4.1 Structure.- 8.4.2 Pulsars.- 8.4.3 Gamma-Ray Bursts.- 8.4.4 X-ray Sources.- 8.5 Type II Supernovae.- 8.5.1 Pre-supernova Models.- 8.5.2 Collapse.- 8.5.3 Supernova 1987A.