The Valuative Tree: Lecture Notes in Mathematics, cartea 1853
Autor Charles Favre, Mattias Jonssonen Limba Engleză Paperback – 16 sep 2004
Din seria Lecture Notes in Mathematics
- 17% Preț: 360.42 lei
- Preț: 459.92 lei
- Preț: 121.41 lei
- Preț: 175.68 lei
- Preț: 197.00 lei
- Preț: 279.76 lei
- Preț: 477.65 lei
- 17% Preț: 361.88 lei
- Preț: 252.37 lei
- Preț: 353.99 lei
- Preț: 138.88 lei
- Preț: 152.61 lei
- Preț: 116.67 lei
- Preț: 102.77 lei
- 17% Preț: 365.52 lei
- Preț: 396.75 lei
- 17% Preț: 362.12 lei
- Preț: 396.11 lei
- Preț: 357.78 lei
- 17% Preț: 362.31 lei
- Preț: 403.80 lei
- 17% Preț: 361.70 lei
- Preț: 499.87 lei
- Preț: 457.03 lei
- Preț: 395.90 lei
- Preț: 459.00 lei
- Preț: 487.57 lei
- Preț: 424.01 lei
- Preț: 487.57 lei
- Preț: 330.55 lei
- Preț: 325.75 lei
- Preț: 350.30 lei
- Preț: 331.31 lei
- Preț: 408.37 lei
- Preț: 328.25 lei
- Preț: 421.28 lei
- Preț: 276.08 lei
- Preț: 424.60 lei
- Preț: 422.05 lei
- Preț: 505.01 lei
- Preț: 422.05 lei
- Preț: 274.93 lei
- Preț: 335.16 lei
- Preț: 422.27 lei
- Preț: 497.49 lei
- Preț: 272.81 lei
- Preț: 428.04 lei
- Preț: 376.22 lei
- Preț: 427.10 lei
- Preț: 325.92 lei
Preț: 365.21 lei
Nou
Puncte Express: 548
Preț estimativ în valută:
69.89€ • 72.52$ • 58.42£
69.89€ • 72.52$ • 58.42£
Carte tipărită la comandă
Livrare economică 11-17 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540229841
ISBN-10: 3540229841
Pagini: 260
Ilustrații: XVI, 244 p.
Greutate: 0.37 kg
Ediția:2004
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540229841
Pagini: 260
Ilustrații: XVI, 244 p.
Greutate: 0.37 kg
Ediția:2004
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 Generalities.- 1.1 Setup.- 1.2 Valuations.- 1.3 Krull Valuations.- 1.4 Plane Curves.- 1.5 Examples of Valuations.- 1.6 Valuations Versus Krull Valuations.- 1.7 Sequences of Blowups and Krull Valuations.- 2 MacLane’s Method.- 2.1 Sequences of Key Polynomials.- 2.2 Classification.- 2.3 Graded Rings and Numerical Invariants.- 2.4 From Valuations to SKP’s.- 2.5 A Computation.- 3 Tree Structures.- 3.1 Trees.- 3.2 Nonmetric Tree Structure on V.- 3.3 Parameterization of V by Skewness.- 3.4 Multiplicities.- 3.5 Approximating Sequences.- 3.6 Thinness.- 3.7 Value Semigroups and Approximating Sequences.- 3.8 Balls of Curves.- 3.9 The Relative Tree Structure.- 4 Valuations Through Puiseux Series.- 4.1 Puiseux Series and Valuations.- 4.2 Tree Structure.- 4.3 Galois Action.- 4.4 A Tale of Two Trees.- 4.5 The Berkovich Projective Line.- 4.6 The Bruhat-Tits Metric.- 4.7 Dictionary.- 5 Topologies.- 5.1 The Weak Topology.- 5.2 The Strong Topology on V.- 5.3 The Strong Topology on Vqm.- 5.4 Thin Topologies.- 5.5 The Zariski Topology.- 5.6 The Hausdorff-Zariski Topology.- 5.7 Comparison of Topologies.- 6 The Universal Dual Graph.- 6.1 Nonmetric Tree Structure.- 6.2 Infinitely Near Points.- 6.3 Parameterization and Multiplicity.- 6.4 The Isomorphism.- 6.5 Proof of the Isomorphism.- 6.6 Applications.- 6.7 The Dual Graph of the Minimal Desingularization.- 6.8 The Relative Tree Structure.- 7 Tree Measures.- 7.1 Outline.- 7.2 More on the Weak Topology.- 7.3 Borel Measures.- 7.4 Functions of Bounded Variation.- 7.5 Representation Theorem I.- 7.6 Complex Tree Potentials.- 7.7 Representation Theorem II.- 7.8 Atomic Measures.- 7.9 Positive Tree Potentials.- 7.10 Weak Topologies and Compactness.- 7.11 Restrictions to Subtrees.- 7.12 Inner Products.- 8 Applications of the Tree Analysis.- 8.1Zariski’s Theory of Complete Ideals.- 8.2 The Voûte étoilée.- A Infinitely Singular Valuations.- A.1 Characterizations.- A.2 Constructions.- B The Tangent Space at a Divisorial Valuation.- C Classification.- D Combinatorics of Plane Curve Singularities.- D.1 Zariski’s Terminology for Plane Curve Singularities.- D.2 The Eggers Tree.- E.1 Completeness.- E.2 The Residue Field.- References.
Textul de pe ultima copertă
This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest.
Caracteristici
Includes supplementary material: sn.pub/extras