Theory of Elastic Wave Propagation and its Application to Scattering Problems
Autor Terumi Touheien Limba Engleză Hardback – 24 apr 2024
- Offers comprehensive coverage of fundamental concepts through to contemporary applications of elastic wave propagation
- Bridges the gap between theoretical principles and practical engineering solutions
Preț: 678.27 lei
Preț vechi: 797.97 lei
-15% Nou
Puncte Express: 1017
Preț estimativ în valută:
129.80€ • 134.75$ • 108.23£
129.80€ • 134.75$ • 108.23£
Carte tipărită la comandă
Livrare economică 22 martie-05 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781032170770
ISBN-10: 1032170778
Pagini: 284
Ilustrații: 160
Dimensiuni: 156 x 234 x 18 mm
Greutate: 0.68 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
ISBN-10: 1032170778
Pagini: 284
Ilustrații: 160
Dimensiuni: 156 x 234 x 18 mm
Greutate: 0.68 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Public țintă
PostgraduateCuprins
1. Introduction. 2. Basic properties of solution for elastic wave equation and representation theorem. 3. Elastic wave propagation in 3D elastic half-space. 4. Analysis of scattering problems by means of Green's functions. Appendix A. Tensor algebra for continuum mechanics. Appendix B. Fourier transform, Fourier-Hankel transform, and Dirac delta function. Appendix C. Green's function in the wavenumber domain. Appendix D. Comparison of Green's function obtained using various computational methods. Appendix E. Music algorithm for detecting location of point-like scatters. Answers. References.
Notă biografică
Terumi Touhei is a Professor at the Tokyo University of Science, with extensive experience of teaching graduate students.
Descriere
Elastic wave propagation applies widely across engineering. This presents continuum mechanics, stress and strain tensors, and the derivation of equations for elastic wave motions with Green’s function. The MUSIC algorithm is used to address inverse scattering problems, and the companion website provides software with detailed solutions.