Cantitate/Preț
Produs

Thermal Stresses—Advanced Theory and Applications: Solid Mechanics and Its Applications, cartea 158

Autor Richard B. Hetnarski, M. Reza Eslami
en Limba Engleză Hardback – 3 mai 2019
This is an advanced modern textbook on thermal stresses. It serves a wide range of readers, in particular, graduate and postgraduate students, scientists, researchers in various industrial and government institutes, and engineers working in mechanical, civil, and aerospace engineering.
This volume covers diverse areas of applied mathematics, continuum mechanics, stress analysis, and mechanical design. This work treats a number of topics not presented in other books on thermal stresses, for example: theory of coupled and generalized thermoelasticity, finite and boundary element method in generalized thermoelasticity, thermal stresses in functionally graded structures, and thermal expansions of piping systems.
The book starts from basic concepts and principles, and these are developed to more advanced levels as the text progresses. Nevertheless, some basic knowledge on the part of the reader is expected in classical mechanics, stress analysis, andmathematics, including vector and cartesian tensor analysis.
This 2nd enhanced edition includes a new chapter on Thermally Induced Vibrations. The method of stiffness is added to Chapter 7. The variational principle for the Green-Lindsay and Green-Naghdi models have been added to Chapter 2 and equations of motion and compatibility equations in spherical coordinates to Chapter 3. Additional problems at the end of chapters were added. 
Citește tot Restrânge

Din seria Solid Mechanics and Its Applications

Preț: 69809 lei

Preț vechi: 87261 lei
-20% Nou

Puncte Express: 1047

Preț estimativ în valută:
13364 13912$ 11002£

Carte disponibilă

Livrare economică 10-24 ianuarie 25
Livrare express 27 decembrie 24 - 02 ianuarie 25 pentru 5724 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030104351
ISBN-10: 3030104354
Pagini: 599
Ilustrații: XXXII, 636 p. 225 illus., 19 illus. in color.
Dimensiuni: 155 x 235 x 37 mm
Greutate: 1.23 kg
Ediția:2nd ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Solid Mechanics and Its Applications

Locul publicării:Cham, Switzerland

Cuprins

Chapter 1: Basic Laws of Thermoelasticity.- 1 Introduction.- 2 Stresses and Tractions.- 3 Equations of Motion.- 4 Coordinate Transformation. Principal Axes.- 5 Principal Stresses and Stress Invariants.- 6 Displacement and Strain Tensor.- 7 Compatibility Equations. Simply Connected Region.- 8 Compatibility Conditions. Multiply Connected Regions.- 9 Constitutive Laws of Linear Thermoelasticity.- 10 Displacement Formulation of Thermoelasticity.- 11 Stress Formulation of Thermoelasticity.- 12 Two-Dimensional Thermoelasticity.- 13 Michell Conditions.- 14 Problems.- Chapter 2: Thermodynamics of Elastic Continuum.- 1 Introduction.- 2 Thermodynamics Definitions.- 3 First Law of Thermodynamics.- 4 Second Law of Thermodynamics.- 5 Variational Formulation of Thermodynamics.- 6 Thermodynamics of Elastic Continuum.- 7 General Theory of Thermoelasticity.- 8 Free Energy Function of Hookean Materials.- 9 Fourier’s Law and Heat Conduction Equation.- 10 Generalized Thermoelasticity, Second Sound.- 11 Thermoelasticity without Energy Dissipation.- 12 A Unified Generalized Thermoelasticity.- 13 Uniqueness Theorem.- 14 Variational Principle of Thermoelasticity.- 15 Reciprocity Theorem.- 16 Initial and Boundary Conditions.- 17 Problems.- Chapter 3: Basic Problems of Thermoelasticity.- 1 Introduction.- 2 Temperature Distribution for Zero Thermal Stress.- 3 Analogy of Thermal Gradient with Body Forces.- 4 General Solution of Thermoelastic Problems.- 5 Solution of Two-Dimensional Navier Equations.- 6 General Solution in Cylindrical Coordinates.- 7 Solution of Problems in Spherical Coordinates.- 8 Problems.- Chapter 4: Heat Conduction Problems.- 1 Introduction.- 2 Problems in Rectangular Cartesian Coordinates.- 3 Problems in Cylindrical Coordinates.- 4 Problems in Spherical Coordinates.- 5 Problems.- Chapter 5: Thermal Stresses in Beams.- 1 Introduction.- 2 Thermal Stresses in Beams.- 3 Deflection Equation of Beams.- 4 Boundary Conditions.- 5 Shear Stress in a Beam.- 6 Beams of Rectangular Cross Section.- 7 Transient Stresses in Rectangular Beams.- 8 Beam with Internal Heat Generation.- 9 Bimetallic Beam.- 10 Functionally Graded Beams.- 11 Transient Stresses in FGM Beams.- 12 Thermal Stresses in Thin Curved Beams and Rings.- 13 Deflection of Thin Curved Beams and Rings.- 14 Problems.- Chapter 6: Disks, Cylinders, and Spheres 2591 Introduction.- 2 Cylinders with Radial Temperature Variation.- 3 Thermal Stresses in Disks.- 4 Thick Spheres.- 5 Thermal Stresses in a Rotating Disk.- 6 Non-axisymmetrically Heated Cylinders.- 7 Method of Complex Variables.- 8 Functionally Graded Thick Cylinders.- 9 Axisymmetric Stresses in FGM Cylinders.- 10 Transient Thermal Stresses in Thick Spheres.- 11 Functionally Graded Spheres .- 12 Problems.- Chapter 7: Thermal Expansion in Piping Systems.- 1 Introduction.- 2 Definition of the Elastic Center.- 3 Piping Systems in Two Dimensions.- 4 Piping Systems in Three Dimensions.- 5 Pipelines with Large Radius Elbows.- 6 Stiffness Method.- 7 RotationMatrix.- 8 Transformation Matrix.- 9 Flexibility Matrix of a Single Member.- 10 Flexibility Matrix of a Branch.- 11 Flexibility Matrix of a Straight Member.- 12 Flexibility Matrix of a Bend Member.- 13 Problems.- Chapter 8: Coupled and Generalized Thermoelasticity.- 1 Introduction.- 2 Governing Equations of Coupled Thermoelasticity.- 3 Coupled Thermoelasticity for Infinite Space.- 4 Variable Heat Source.- 5 One-Dimensional Coupled Problem.- 6 Propagation of Discontinuities.- 7 Half-Space Subjected to a Harmonic Temperature.- 8 Coupled Thermoelasticity of Thick Cylinders.- 9 Green–Naghdi Model of a Layer.- 10 Generalized Thermoelasticity of Layers.- 11 Generalized Thermoelasticity in Spheres and Cylinders.- 12 Problems.- Chapter 9: Finite and Boundary Element Methods.- 1 Introduction.- 2 Galerkin Finite Element.- 3 Functionally Graded Layers.- 4 Coupled Thermoelasticity of Thick Spheres.- 5 Generalized Thermoelasticity of FG Spheres.- 6 Generalized Thermoelasticity of FG Disk.- 7 HigherOrder Elements.- 8 Functionally Graded Beams.- 9 Thermally Nonlinear GeneralizedThermoelasticity.- 10 Boundary Element Formulation.- Chapter 10: Thermally Induced Vibrations.- 1 Introduction.- 2 Thermally Induced Vibrations of Isotropic Beams.- 3 Thermally Induced Vibration of FGM Beams.- 4 Thermally Induced Vibration of Shallow Arches.- Chapter 11: Creep Analysis.- 1 Introduction.- 2 Creep of Metals.- 3 Constitutive Equation of Uniaxial Creep.- 4 Creep Relaxation, Linear Rheological Models.- 5 Three-Dimensional Governing Equations.- 6 Creep Potential, General Theory of Creep.- 7 Stress Function for Creep Problems.- 8 Creep Linearization.- 9 Creep Relaxation of Axisymmetric Stresses.- 10 Creep Relaxation of Non-axisymmetric Stresses.- 11 Thermoelastic Creep Relaxation in Beams.12 Problems.- Subject  Index.

Notă biografică

Dr. Richard B. Hetnarski is Professor Emeritus of the Department of Mechanical Engineering at the Rochester Institute of Technology.

Mohammad Reza Eslami is Professor at the Mechanical Engineering Department of the 
Amirkabir University of Technology (Tehran Polytechnic), in Iran. 

Textul de pe ultima copertă

This is an advanced modern textbook on thermal stresses. It serves a wide range of readers, in particular, graduate and postgraduate students, scientists, researchers in various industrial and government institutes, and engineers working in mechanical, civil, and aerospace engineering.
This volume covers diverse areas of applied mathematics, continuum mechanics, stress analysis, and mechanical design. This work treats a number of topics not presented in other books on thermal stresses, for example: theory of coupled and generalized thermoelasticity, finite and boundary element method in generalized thermoelasticity, thermal stresses in functionally graded structures, and thermal expansions of piping systems.
The book starts from basic concepts and principles, and these are developed to more advanced levels as the text progresses. Nevertheless, some basic knowledge on the part of the reader is expected in classical mechanics, stress analysis, andmathematics, including vector and cartesian tensor analysis.
This 2nd enhanced edition includes a new chapter on Thermally Induced Vibrations. The method of stiffness is added to Chapter 7. The variational principle for the Green-Lindsay and Green-Naghdi models have been added to Chapter 2 and equations of motion and compatibility equations in spherical coordinates to Chapter 3. Additional problems at the end of chapters were added. 
 

Caracteristici

Includes many engineering applications in addition to the theory Includes problems and solutions at the end of each chapter Also suitable for engineers in industry and researchers at universities Includes supplementary material: sn.pub/extras