Transfer Learning for Rotary Machine Fault Diagnosis and Prognosis
Autor Ruqiang Yan, Fei Shenen Limba Engleză Paperback – 14 noi 2023
- Offers case studies for each transfer learning algorithm
- Optimizes the transfer learning models to solve specific engineering problems
- Describes the roles of transfer components, transfer fields, and transfer order in intelligent machine diagnosis and prognosis
Preț: 892.66 lei
Preț vechi: 1178.47 lei
-24% Nou
Puncte Express: 1339
Preț estimativ în valută:
170.84€ • 180.23$ • 142.37£
170.84€ • 180.23$ • 142.37£
Carte indisponibilă temporar
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780323999892
ISBN-10: 0323999891
Pagini: 312
Ilustrații: 100 illustrations (50 in full color)
Dimensiuni: 152 x 229 mm
Editura: ELSEVIER SCIENCE
ISBN-10: 0323999891
Pagini: 312
Ilustrații: 100 illustrations (50 in full color)
Dimensiuni: 152 x 229 mm
Editura: ELSEVIER SCIENCE
Public țintă
Graduate students and researchers in Industrial or Mechanical EngineeringCuprins
1. Introduction to machine fault diagnosis and prognosis 2. The basic principle of transfer learning-based mechanical fault diagnosis and prognosis 3. Fault diagnosis models based on sample transfer components 4. Fault diagnosis models based on feature transfer components 5. Fault diagnosis models based on cross time fields transfer 6. Fault diagnosis models based on cross channel fields transfer 7. Fault diagnosis models based on cross machine fields transfer 8. Prognosis models driven by transfer orders 9. Fault diagnosis and prognosis driven by deep transfer learning 10. Summary