Cantitate/Preț
Produs

Trivariate Local Lagrange Interpolation and Macro Elements of Arbitrary Smoothness

Autor Michael Andreas Matt
en Limba Engleză Paperback – 11 mai 2012
Michael A. Matt constructs two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The second is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. The author constructs trivariate macro-elements based on the Alfeld split, where each tetrahedron is divided into four subtetrahedra, and the Worsey-Farin split, where each tetrahedron is divided into twelve subtetrahedra, of a tetrahedral partition. In order to obtain the macro-elements based on the Worsey-Farin split minimal determining sets for Cr macro-elements are constructed over the Clough-Tocher split of a triangle, which are more variable than those in the literature.
Citește tot Restrânge

Preț: 39008 lei

Nou

Puncte Express: 585

Preț estimativ în valută:
7464 7814$ 6176£

Carte tipărită la comandă

Livrare economică 05-19 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783834823830
ISBN-10: 383482383X
Pagini: 390
Ilustrații: XVI, 370 p. 87 illus., 2 illus. in color.
Dimensiuni: 148 x 210 x 23 mm
Greutate: 0.46 kg
Ediția:2012
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany

Public țintă

Research

Cuprins

Lagrange Interpolation on Type-4 Partitions.- Trivariate Lagrange Interpolation with C² Splines.-  Cr Macro-Element over the Clough-Tocher Split.- Cr Macro-Element over the Alfeld Split.- Cr Macro-Element over the Worsey Farin Split.

Notă biografică

Dr. Michael A. Matt completed his doctoral thesis under the supervision of Prof. Dr. Günther Nürnberger at the Chair of Mathematics IV, University of Mannheim.

Textul de pe ultima copertă

Michael A. Matt constructs two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The second is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. The author constructs trivariate macro-elements based on the Alfeld split, where each tetrahedron is divided into four subtetrahedra, and the Worsey-Farin split, where each tetrahedron is divided into twelve subtetrahedra, of a tetrahedral partition. In order to obtain the macro-elements based on the Worsey-Farin split minimal determining sets for Cr macro-elements are constructed over the Clough-Tocher split of a triangle, which are more variable than those in the literature.

Caracteristici

Two trivariate local Lagrange interpolation methods are constructed which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition