Cantitate/Preț
Produs

Tuning Innovation with Biotechnology

Autor Dong Hwa Kim
en Limba Engleză Hardback – 20 dec 2017
This book deals with evolving intelligence systems and their use in immune algorithm (IM), particle swarm optimization (PSO), bacterial foraging (BF), and hybrid intelligent system to improve plants, robots, etc. It discusses the motivation behind research on and background of evolving intelligence systems and illustrates IM-based approach for parameter estimation required for designing an intelligent system. It approaches optimal intelligent tuning using a hybrid genetic algorithm–particle swarm optimization (GA-PSO) and illustrates hybrid GA-PSO for intelligent tuning of vector system.
Citește tot Restrânge

Preț: 54278 lei

Preț vechi: 72669 lei
-25% Nou

Puncte Express: 814

Preț estimativ în valută:
10386 11106$ 8660£

Comandă specială

Livrare economică 28 martie-11 aprilie

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789814745352
ISBN-10: 9814745359
Pagini: 232
Ilustrații: 45 Tables, black and white; 15 Illustrations, color; 126 Illustrations, black and white
Dimensiuni: 152 x 229 x 14 mm
Greutate: 0.52 kg
Ediția:1
Editura: Jenny Stanford Publishing
Colecția Jenny Stanford Publishing

Cuprins

Background. Immune Network–Based Parameter Estimation. Intelligent PID Controller Tuning Using a Hybrid GA-PSO Approach. GA-PSO-Based PI Controller Tuning for Indirect Vector Control of Three-Phase Induction Motor. Novel Hybrid System Based on GA and Bacteria Foraging. Conclusion.

Descriere

This book deals with evolving intelligence systems and their use in immune algorithm (IM), particle swarm optimization (PSO), bacterial foraging (BF), and hybrid intelligent system to improve plants, robots, etc. It discusses the motivation behind research on and background of evolving intelligence systems and illustrates IM-based approach for parameter estimation required for designing an intelligent system. It approaches optimal intelligent tuning using a hybrid genetic algorithm–particle swarm optimization (GA-PSO) and illustrates hybrid GA-PSO for intelligent tuning of vector system.