Cantitate/Preț
Produs

Tutorials in Mathematical Biosciences III: Cell Cycle, Proliferation, and Cancer: Lecture Notes in Mathematics, cartea 1872

Editat de Avner Friedman Contribuţii de B. Aguda, M. Chaplain, A. Friedman, M. Kimmel, H. A. Levine, G. Lolas, A. Matzavinos, M. Nilsen-Hamilton, A. Swierniak
en Limba Engleză Paperback – 19 dec 2005
This volume introduces some basic mathematical models for cell cycle, proliferation, cancer, and cancer therapy. Chapter 1 gives an overview of the modeling of the cell division cycle. Chapter 2 describes how tumor secretes growth factors to form new blood vessels in its vicinity, which provide it with nutrients it needs in order to grow. Chapter 3 explores the process that enables the tumor to invade the neighboring tissue. Chapter 4 models the interaction between a tumor and the immune system. Chapter 5 is concerned with chemotherapy; it uses concepts from control theory to minimize obstacles arising from drug resistance and from cell cycle dynamics. Finally, Chapter 6 reviews mathematical results for various cancer models.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 37487 lei

Nou

Puncte Express: 562

Preț estimativ în valută:
7175 7478$ 5973£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540291626
ISBN-10: 3540291628
Pagini: 253
Ilustrații: VII, 246 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.36 kg
Ediția:2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Mathematics, Mathematical Biosciences Subseries

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Modeling the Cell Division Cycle (B. Aguda).- Angiogenesis - A Biochemical/Mathematical Prospective (H. A. Levine and M. Nilsen-Hamilton).- Spatio-Temporal Models of the uPA System and Tissue Invasion (G. Lolas).- Mathematical Modeling of Spatio-Temporal Phenomena in Tumor Immunology (M. Chaplain and A. Matzavinos).- Control Theory Approach to Cancer Chemotherapy: Benefiting from Phase Dependence and Overcoming Drug Resistance (M. Kimmel and A. Swierniak).- Cancer Models and their Mathematical Analysis (A. Friedman).

Caracteristici

Includes supplementary material: sn.pub/extras