Cantitate/Preț
Produs

Two-dimensional Single-Variable Cubic Nonlinear Systems, Vol III

Autor Albert C. J. Luo
en Limba Engleză Hardback – 3 sep 2024
This book, the third of 15 related monographs, presents systematically a theory of self-independent cubic nonlinear systems. Here, at least one vector field is self-cubic, and the other vector field can be constant, self-linear, self-quadratic, or self-cubic. For constant vector fields in this book, the dynamical systems possess 1-dimensional flows, such as source, sink and saddle flows, plus third-order source and sink flows.  For self-linear and self-cubic systems discussed,  the dynamical systems possess source, sink and saddle equilibriums, saddle-source and saddle-sink, third-order sink and source (i.e, (3rd SI:SI)-sink and (3rdSO:SO)-source) and third-order source (i.e., (3rd SO:SI)-saddle, (3rd SI, SO)-saddle) . For self-quadratic and self-cubic systems, in addition to the first and third-order sink, source and saddles plus saddle-source and saddle-sink, there are (3:2)-saddle-sink and (3:2) saddle-source and double-saddles. For the two self-cubic systems, (3:3)-source, sink and saddles exist. Finally, the author describes that homoclinic orbits without centers can be formed, and the corresponding homoclinic networks of source, sink and saddles exists.   
Readers will learn new concepts, theory, phenomena, and analytic techniques, including
Constant and crossing-cubic systems
Crossing-linear and crossing-cubic systems
Crossing-quadratic and crossing-cubic systems
Crossing-cubic and crossing-cubic systems
Appearing and switching bifurcations
Third-order centers and saddles
Parabola-saddles and inflection-saddles
Homoclinic-orbit network with centers
Appearing bifurcations
Citește tot Restrânge

Preț: 79709 lei

Preț vechi: 104879 lei
-24% Nou

Puncte Express: 1196

Preț estimativ în valută:
15266 15728$ 12788£

Carte tipărită la comandă

Livrare economică 19-25 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031571114
ISBN-10: 3031571118
Pagini: 270
Ilustrații: IX, 277 p. 33 illus., 32 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.63 kg
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

Constant and Self-Cubic Vector fields.- Self-linear and Self-cubic vector fields.- Self-quadratic and self-cubic vector fields .- Two self-cubic vector fields.


Notă biografică

Dr. Albert C. J. Luo is a Distinguished Research Professor at the Southern Illinois University Edwardsville, in Edwardsville, IL, USA. Dr. Luo worked on Nonlinear Mechanics, Nonlinear Dynamics, and Applied Mathematics. He proposed and systematically developed: (i) the discontinuous dynamical system theory, (ii) analytical solutions for periodic motions in nonlinear dynamical systems, (iii) the theory of dynamical system synchronization, (iv) the accurate theory of nonlinear deformable-body dynamics, (v) new theories for stability and bifurcations of nonlinear dynamical systems. He discovered new phenomena in nonlinear dynamical systems. His methods and theories can help understanding and solving the Hilbert sixteenth problems and other nonlinear physics problems. The main results were scattered in 45 monographs in Springer, Wiley, Elsevier, and World Scientific, over 200 prestigious journal papers, and over 150 peer-reviewed conference papers.

Textul de pe ultima copertă

This book, the third of 15 related monographs, presents systematically a theory of self-independent cubic nonlinear systems. Here, at least one vector field is self-cubic, and the other vector field can be constant, self-linear, self-quadratic, or self-cubic. For constant vector fields in this book, the dynamical systems possess 1-dimensional flows, such as source, sink and saddle flows, plus third-order source and sink flows.  For self-linear and self-cubic systems discussed,  the dynamical systems possess source, sink and saddle equilibriums, saddle-source and saddle-sink, third-order sink and source (i.e, (3rd SI:SI)-sink and (3rdSO:SO)-source) and third-order source (i.e., (3rd SO:SI)-saddle, (3rd SI, SO)-saddle) . For self-quadratic and self-cubic systems, in addition to the first and third-order sink, source and saddles plus saddle-source and saddle-sink, there are (3:2)-saddle-sink and (3:2) saddle-source and double-saddles. For the two self-cubic systems, (3:3)-source, sink and saddles exist. Finally, the author describes that homoclinic orbits without centers can be formed, and the corresponding homoclinic networks of source, sink and saddles exists.   
Readers will learn new concepts, theory, phenomena, and analytic techniques, including
Constant and crossing-cubic systems
Crossing-linear and crossing-cubic systems
Crossing-quadratic and crossing-cubic systems
Crossing-cubic and crossing-cubic systems
Appearing and switching bifurcations
Third-order centers and saddles
Parabola-saddles and inflection-saddles
Homoclinic-orbit network with centers
Appearing bifurcations
  • Develops equilibrium singularity and bifurcations in 2-dimensional self-cubic systems; 
  • Presents (1,3) and (3,3)-sink, source, and saddles; (1,2) and (3,2)-saddle-sink and saddle-source; (2,2)-double-saddles; 
  • Develops homoclinic networks of source, sink and saddles
 
 

Caracteristici

​Develops equilibrium singularity and bifurcations in 2-dimensional self-cubic systems Presents (1,3) and (3,3)-sink, source, and saddles; (1,2) and (3,2)-saddle-sink and saddle-source; (2,2)-double-saddles Develops homoclinic networks of source, sink and saddles