Cantitate/Preț
Produs

Two-Scale Approach to Oscillatory Singularly Perturbed Transport Equations: Lecture Notes in Mathematics, cartea 2190

Autor Emmanuel Frénod
en Limba Engleză Paperback – 6 oct 2017
This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.


 
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 34012 lei

Nou

Puncte Express: 510

Preț estimativ în valută:
6511 6696$ 5402£

Carte tipărită la comandă

Livrare economică 17 februarie-03 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319646671
ISBN-10: 3319646672
Pagini: 126
Ilustrații: XI, 126 p. 18 illus., 9 illus. in color.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.2 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Cham, Switzerland

Cuprins

I Two-Scale Convergence.- 1 Introduction.- 1.1 First Statements on Two-Scale Convergence.- 1.2 Two-Scale Convergence and Homogenization.- 1.2.1 How Homogenization Led to the Concept of Two-Scale Convergence.- 1.2.2 A Remark Concerning Periodicity.- 1.2.3 A Remark Concerning Weak-* Convergence.- 2 Two-Scale Convergence - Definition and Results.- 2.1 Background Material on Two-Scale Convergence.- 2.1.1 Definitions.- 2.1.2 Link with Weak Convergence.- 2.2 Two-Scale Convergence Criteria.- 2.2.1 Injection Lemma.- 2.2.2 Two-Scale Convergence Criterion.- 2.2.3 Strong Two-Scale Convergence Criterion.- 3 Applications.- 3.1 Homogenization of ODE.- 3.1.1 Textbook Case, Setting and Asymptotic Expansion.- 3.1.2 Justification of Asymptotic Expansion Using Two-Scale Convergence.- 3.2 Homogenization of Singularly-Perturbed ODE.- 3.2.1 Equation of Interest and Setting.- 3.2.2 Asymptotic Expansion Results.- 3.2.3 Asymptotic Expansion Calculations.- 3.2.4 Justification Using Two-Scale Convergence I: Results.- 3.2.5 Justification Using Two-Scale Convergence II: Proofs.- 3.3 Homogenization of Hyperbolic PDE.- 3.3.1 Textbook Case and Setting.- 3.3.2 Order-0 Homogenization.- 3.3.3 Order-1 Homogenization.- 3.4 Homogenization of Singularly-Perturbed Hyperbolic PDE.- 3.4.1 Equation of Interest and Setting.- 3.4.2 An a Priori Estimate.- 3.4.3 Weak Formulation with Oscillating Test Functions.- 3.4.4 Order-0 Homogenization - Constraint.- 3.4.5 Order-0 Homogenization - Equation for V.- 3.4.6 Order-1 Homogenization - Preparations: Equations for U and u.- 3.4.7 Order-1 Homogenization - Strong Two-Scale Convergence of u".- 3.4.8 Order-1 Homogenization - The Function W1.- 3.4.9 Order-1 Homogenization - A Priori Estimate and Convergence.- 3.4.10 Order-1 Homogenization - Constraint.- 3.4.11 Order-1 Homogenization - Equation for V1.- 3.4.12 Concerning Numerics.- II Two-Scale Numerical Methods.- 4 Introduction.- 5 Two-Scale Method for Object Drift with Tide.- 5.1 Motivation and Model.- 5.1.1 Motivation.- 5.1.2 Model of Interest.- 5.2 Two-Scale Asymptotic Expansion.- 5.2.1 Asymptotic Expansion.- 5.2.2 Discussion.- 5.3 Two-Scale Numerical Method.- 5.3.1 Construction of the Two-Scale Numerical Method.- 5.3.2 Validation of the Two-Scale Numerical Method.- 6 Two-Scale Method for Beam.- 6.1 Some Words About Beams and Model of Interest.- 6.1.1 Beams.- 6.1.2 Equations of Interest.- 6.1.3 Two-Scale Convergence.- 6.2 Two-Scale PIC Method.- 6.2.1 Formulation of the Two-Scale Numerical Method.- 6.2.2 Numerical Results.

Recenzii

“This is a good research monograph for people working on theoretical and numerical aspects of oscillatory singularly perturbed differential equations. The book is well-written with several examples from various applications. This book provides the complete picture of two-scale convergence approach for homogenization problems and the numerical approach. This monograph is excellent and well-written. This book will be very useful for mathematicians and engineers working on multiscale problems.” (Srinivasan Natesan, zbMATH 1383.65084, 2018)

Notă biografică

Emmanuel Frénod is Professor of Applied Mathematics at Université Bretagne Sud.

Textul de pe ultima copertă

This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

Caracteristici

Provides a very affordable approach to the homogenization theory Gives a complete vision - from theory to numerics - of consequences of strong oscillations in transport phenomena Contains several applications from environment questions to Iter plasmas