Understanding the Physics of Particle Accelerators: A Guide to Beam Dynamics Simulations Using ZGOUBI: Particle Acceleration and Detection
Autor François Méoten Limba Engleză Hardback – 11 sep 2024
The book offers computer simulations in which readers can manipulate, guide, and accelerate charged particles and particle beams in most types of particle accelerator. By performing these simulation exercises, they will acquire a deeper understanding of charged particle beam optics, accelerator physics and technology, as well as the why and how of when to use one technology or the other. These exercises guide readers through a virtual world of accelerator and beam simulations, and involve e.g. manipulating beams for cancer therapy, producing synchrotron radiation for condensed matter research, accelerating polarized ion beams for nuclear physics research, etc. In addition to acquiring an enhanced grasp of physics, readers will discover the basic theoretical and practical aspects of particle accelerators’ main components: guiding and focusing magnets, radio-wave accelerating cavities, wigglers, etc.
Din seria Particle Acceleration and Detection
- Preț: 386.06 lei
- Preț: 301.08 lei
- 18% Preț: 780.06 lei
- Preț: 426.72 lei
- 18% Preț: 891.33 lei
- 15% Preț: 583.93 lei
- 18% Preț: 1112.48 lei
- 15% Preț: 656.89 lei
- 24% Preț: 749.62 lei
- 24% Preț: 791.78 lei
- 15% Preț: 643.34 lei
- Preț: 390.25 lei
- 15% Preț: 636.45 lei
- 24% Preț: 644.82 lei
- 18% Preț: 1230.03 lei
- 15% Preț: 645.96 lei
- 18% Preț: 1405.57 lei
- 15% Preț: 645.79 lei
- Preț: 150.66 lei
- 15% Preț: 649.54 lei
- 15% Preț: 537.29 lei
- 20% Preț: 582.50 lei
- 24% Preț: 743.51 lei
- 24% Preț: 831.57 lei
- 18% Preț: 735.51 lei
- 18% Preț: 1007.03 lei
- 18% Preț: 963.91 lei
- 24% Preț: 687.50 lei
Preț: 435.47 lei
Nou
Puncte Express: 653
Preț estimativ în valută:
83.33€ • 86.10$ • 69.32£
83.33€ • 86.10$ • 69.32£
Carte disponibilă
Livrare economică 27 februarie-13 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031599781
ISBN-10: 3031599780
Ilustrații: X, 690 p. 100 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.22 kg
Ediția:2024
Editura: Springer International Publishing
Colecția Springer
Seria Particle Acceleration and Detection
Locul publicării:Cham, Switzerland
ISBN-10: 3031599780
Ilustrații: X, 690 p. 100 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.22 kg
Ediția:2024
Editura: Springer International Publishing
Colecția Springer
Seria Particle Acceleration and Detection
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Electrostatic Accelerator.- Linear Accelerator.- Classical Cyclotron.- Relativist Cyclotron.- Microtron.- Betatron.- Synchrocyclotron.- Weak Focusing Synchrotron.- Strong Focusing Synchrotron.- FFAG, Scaling.- Optical Elements.- Ancillary Tools.- Solutions.- Glossary.
Notă biografică
Dr. François Méot received his Ph.D. in Particle Accelerator Physics, carried out at CERN, from the Polytechnic Institute in Grenoble (Grenoble-Polytech) in 1981. He was then hired at the French Atomic Energy Commission (CEA), where he joined the Theory Group at the Laboratoire National SATURNE at Saclay. In 1998 he obtained an "Habilitation à Diriger des Recherches" from Grenoble-Polytech, and in 2004 a national "University Professorship Qualification" from the Ministry of Universities in France. In 2010 he was hired by Brookhaven National Laboratory, Collider-Accelerator Department, where he joined the Accelerator Physics group. From 1982 to the present, he has held various teaching and assistant professor positions, in mathematics, physics or accelerator physics, in various French universities and in New York State University at Stony Brook. Over the years he has supervised more than 30 students from under-graduate to post-doctorate, including 10 Ph.Ds. He has been the director of the European "Joint Universities Accelerator School" in Archamps, Geneva County, France, over the period 2005–2010. He has been participating in many conferences and workshop organizing and scientific committees, and expertise and review committees. He is the author of over 180 publications, including more than 40 in peer-reviewed journals. He was a member of the EPS until 2010 and is now a member of the APS.
Textul de pe ultima copertă
This open access book introduces readers to the physics of particle accelerators, by means of beam dynamics simulations and exercises using the computer code ZGOUBI. The respective chapters are organized chronologically and trace the historical development of accelerators from electrostatic columns to storage rings, to the numerous variations on resonant acceleration and focusing techniques, while also addressing side aspects such as synchrotron radiation and spin dynamics.
The book offers computer simulations in which readers can manipulate, guide, and accelerate charged particles and particle beams in most types of particle accelerator. By performing these simulation exercises, they will acquire a deeper understanding of charged particle beam optics, accelerator physics and technology, as well as the why and how of when to use one technology or the other. These exercises guide readers through a virtual world of accelerator and beam simulations, and involve e.g. manipulating beams for cancer therapy, producing synchrotron radiation for condensed matter research, accelerating polarized ion beams for nuclear physics research, etc. In addition to acquiring an enhanced grasp of physics, readers will discover the basic theoretical and practical aspects of particle accelerators’ main components: guiding and focusing magnets, radio-wave accelerating cavities, wigglers, etc.
The book offers computer simulations in which readers can manipulate, guide, and accelerate charged particles and particle beams in most types of particle accelerator. By performing these simulation exercises, they will acquire a deeper understanding of charged particle beam optics, accelerator physics and technology, as well as the why and how of when to use one technology or the other. These exercises guide readers through a virtual world of accelerator and beam simulations, and involve e.g. manipulating beams for cancer therapy, producing synchrotron radiation for condensed matter research, accelerating polarized ion beams for nuclear physics research, etc. In addition to acquiring an enhanced grasp of physics, readers will discover the basic theoretical and practical aspects of particle accelerators’ main components: guiding and focusing magnets, radio-wave accelerating cavities, wigglers, etc.
Caracteristici
This book is open access, which means that you have free and unlimited access Provides computing tools for the design of fixed-field as well as pulsed cyclic accelerators Introduces readers to numerical methods for integrating the Lorentz force equation Substantiates the use of field maps for beam dynamics simulations in particle accelerators