Cantitate/Preț
Produs

Unitary Reflection Groups: Australian Mathematical Society Lecture Series, cartea 20

Autor Gustav I. Lehrer, Donald E. Taylor
en Limba Engleză Paperback – 12 aug 2009
A complex reflection is a linear transformation which fixes each point in a hyperplane. Intuitively, it resembles the transformation an image undergoes when it is viewed through a kaleidoscope, or arrangement of mirrors. This book gives a complete classification of all groups of transformations of n-dimensional complex space which are generated by complex reflections, using the method of line systems. In particular: irreducible groups are studied in detail, and are identified with finite linear groups; reflection subgroups of reflection groups are completely classified; the theory of eigenspaces of elements of reflection groups is discussed fully; an appendix outlines links to representation theory, topology and mathematical physics. Containing over 100 exercises ranging in difficulty from elementary to research level, this book is ideal for honours and graduate students, or for researchers in algebra, topology and mathematical physics.
Citește tot Restrânge

Din seria Australian Mathematical Society Lecture Series

Preț: 63933 lei

Preț vechi: 71836 lei
-11% Nou

Puncte Express: 959

Preț estimativ în valută:
12235 12831$ 10202£

Carte tipărită la comandă

Livrare economică 08-22 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521749893
ISBN-10: 0521749891
Pagini: 302
Ilustrații: 12 tables 110 exercises
Dimensiuni: 152 x 228 x 16 mm
Greutate: 0.45 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Australian Mathematical Society Lecture Series

Locul publicării:Cambridge, United Kingdom

Cuprins

Introduction; 1. Preliminaries; 2. The groups G(m, p, n); 3. Polynomial invariants; 4. Poincaré series and characterisations of reflection groups; 5. Quaternions and the finite subgroups of SU2(C); 6. Finite unitary reflection groups of rank two; 7. Line systems; 8. The Shepherd and Todd classification; 9. The orbit map, harmonic polynomials and semi-invariants; 10. Covariants and related polynomial identities; 11. Eigenspace theory and reflection subquotients; 12. Reflection cosets and twisted invariant theory; A. Some background in commutative algebra; B. Forms over finite fields; C. Applications and further reading; D. Tables; Bibliography; Index of notation; Index.

Descriere

A complete and clear account of the classification of unitary reflection groups, which arise naturally in many areas of mathematics.