Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
Autor B.K. Tripathy, Anveshrithaa Sundareswaran, Shrusti Ghelaen Limba Engleză Paperback – 25 sep 2023
FEATURES
- Demonstrates how unsupervised learning approaches can be used for dimensionality reduction
- Neatly explains algorithms with a focus on the fundamentals and underlying mathematical concepts
- Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use
- Provides use cases, illustrative examples, and visualizations of each algorithm
- Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis
Preț: 459.84 lei
Preț vechi: 574.80 lei
-20% Nou
Puncte Express: 690
Preț estimativ în valută:
88.03€ • 90.58$ • 74.20£
88.03€ • 90.58$ • 74.20£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781032041032
ISBN-10: 103204103X
Pagini: 174
Ilustrații: 46 Line drawings, black and white; 46 Illustrations, black and white
Dimensiuni: 156 x 234 x 10 mm
Greutate: 0.32 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
ISBN-10: 103204103X
Pagini: 174
Ilustrații: 46 Line drawings, black and white; 46 Illustrations, black and white
Dimensiuni: 156 x 234 x 10 mm
Greutate: 0.32 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Public țintă
AcademicCuprins
Chapter 1 Introduction to Dimensionality Reduction
Chapter 2 Principal Component Analysis (PCA)
Chapter 3 Dual PCA
Chapter 4 Kernel PCA
Chapter 5 Canonical Correlation Analysis (CCA
Chapter 6 Multidimensional Scaling (MDS)
Chapter 7 Isomap
Chapter 8 Random Projections
Chapter 9 Locally Linear Embedding
Chapter 10 Spectral Clustering
Chapter 11 Laplacian Eigenmap
Chapter 12 Maximum Variance Unfolding
Chapter 13 t-Distributed Stochastic Neighbor Embedding (t-SNE
Chapter 14 Comparative Analysis of Dimensionality Reduction
Techniques
Chapter 2 Principal Component Analysis (PCA)
Chapter 3 Dual PCA
Chapter 4 Kernel PCA
Chapter 5 Canonical Correlation Analysis (CCA
Chapter 6 Multidimensional Scaling (MDS)
Chapter 7 Isomap
Chapter 8 Random Projections
Chapter 9 Locally Linear Embedding
Chapter 10 Spectral Clustering
Chapter 11 Laplacian Eigenmap
Chapter 12 Maximum Variance Unfolding
Chapter 13 t-Distributed Stochastic Neighbor Embedding (t-SNE
Chapter 14 Comparative Analysis of Dimensionality Reduction
Techniques
Notă biografică
B.K. Tripathy, Anveshrithaa Sundareswaran, Shrusti Ghela
Descriere
This book describes algorithms like Locally Linear Embedding, Laplacian eigenmaps, Semidefinite Embedding, t-SNE to resolve the problem of dimensionality reduction in case of non-linear relationships within the data. Underlying mathematical concepts, derivations, proofs, strengths and limitations of these algorithms are discussed as well.