Variationsrechnung: Eine Einführung in die Theorie einer unabhängigen Variablen mit Beispielen und Aufgaben
Autor Hansjörg Kielhöferde Limba Germană Paperback – 12 mai 2010
Die Theorie führt in den Euler-Lagrange-Kalkül und in die Direkten Methoden der Variationsrechnung ein. Die Ausführungen werden von Abbildungen begleitet, die das Verständnis erleichtern. Zu jedem Abschnitt werden Übungsaufgaben gestellt, deren Lösungen am Ende des Buches zu finden sind.
Das Buch ist im Bachelorstudium für eine Vorlesung ab dem 3. Semester geeignet. Die Hilfsmittel, welche über die der Grundvorlesungen hinausgehen, werden im Text oder im Anhang bereitgestellt.
Preț: 278.60 lei
Nou
Puncte Express: 418
Preț estimativ în valută:
53.32€ • 55.58$ • 44.39£
53.32€ • 55.58$ • 44.39£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783834809650
ISBN-10: 3834809659
Pagini: 278
Ilustrații: VIII, 278 S. 50 Abb.
Dimensiuni: 170 x 240 x 22 mm
Greutate: 0.5 kg
Ediția:2010
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany
ISBN-10: 3834809659
Pagini: 278
Ilustrații: VIII, 278 S. 50 Abb.
Dimensiuni: 170 x 240 x 22 mm
Greutate: 0.5 kg
Ediția:2010
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany
Public țintă
Upper undergraduateCuprins
Die Euler-Lagrange-Gleichung.- Variationsprobleme mit Nebenbedingungen.- Direkte Methoden der Variationsrechnung.
Recenzii
"Mit diesem Buch liegt eine rundum gelungene Einführung in die Variationsrechnung vor [...]." Zentralblatt MATH, 1233-2012
Notă biografică
Prof. Dr. Hansjörg Kielhöfer, Lehrstuhl für Nichtlineare Analysis, Universität Augsburg
Textul de pe ultima copertă
Dieses Buch ist eine Einführung in die Variationsrechnung, die das Ziel hat, reellwertige Funktionale zu minimieren oder zu maximieren. Die Funktionale sind Integrale über einem Intervall, weshalb die dafür zulässigen Funktionen von nur einer unabhängigen Variablen abhängen. Motiviert werden die Fragestellungen durch viele und zum Teil auch historisch bedeutsame Beispiele.
Die Theorie führt in den Euler-Lagrange-Kalkül und in die Direkten Methoden der Variationsrechnung ein. Die Ausführungen werden von Abbildungen begleitet, die das Verständnis erleichtern. Zu jedem Abschnitt werden Übungsaufgaben gestellt, deren Lösungen am Ende des Buches zu finden sind.
Das Buch ist im Bachelorstudium für eine Vorlesung ab dem 3. Semester geeignet. Die Hilfsmittel, welche über die der Grundvorlesungen hinausgehen, werden im Text oder im Anhang bereitgestellt.
Historische Beispiele - Funktionale und zulässige Funktionen - Die erste Variation - Die Euler-Lagrange-Gleichung - Minimalflächen vom Rotationstyp - Das Problem der Dido - Das Brachystochronenproblem des Johann Bernoulli - Natürliche Randbedingungen - Variationsprobleme in parametrischer Form - Die Weierstraß-Erdmannschen Eckenbedingungen - Isoperimetrische Nebenbedingungen - Holonome und nichtholonome Nebenbedingungen - Geodätische - Transversalität: Freie Ränder auf Mannigfaltigkeiten - Der Satz von Noether - Mechanik in der Formulierung von Lagrange und Hamilton - Das Zweikörperproblem - Die Direkte Methode der Variationsrechnung - Ausführung und Anwendung der Direkten Methode auf Sturm-Liouvillesche Rand- und Eigenwertprobleme
Studierende der Mathematik und Physik an Universitäten und Fachhochschulen
Studierende des Lehramts Mathematik und Physik
Studierende von Ingenieurwissenschaften
Prof. Dr. Hansjörg Kielhöfer, Lehrstuhl für Nichtlineare Analysis, Universität Augsburg
Die Theorie führt in den Euler-Lagrange-Kalkül und in die Direkten Methoden der Variationsrechnung ein. Die Ausführungen werden von Abbildungen begleitet, die das Verständnis erleichtern. Zu jedem Abschnitt werden Übungsaufgaben gestellt, deren Lösungen am Ende des Buches zu finden sind.
Das Buch ist im Bachelorstudium für eine Vorlesung ab dem 3. Semester geeignet. Die Hilfsmittel, welche über die der Grundvorlesungen hinausgehen, werden im Text oder im Anhang bereitgestellt.
Historische Beispiele - Funktionale und zulässige Funktionen - Die erste Variation - Die Euler-Lagrange-Gleichung - Minimalflächen vom Rotationstyp - Das Problem der Dido - Das Brachystochronenproblem des Johann Bernoulli - Natürliche Randbedingungen - Variationsprobleme in parametrischer Form - Die Weierstraß-Erdmannschen Eckenbedingungen - Isoperimetrische Nebenbedingungen - Holonome und nichtholonome Nebenbedingungen - Geodätische - Transversalität: Freie Ränder auf Mannigfaltigkeiten - Der Satz von Noether - Mechanik in der Formulierung von Lagrange und Hamilton - Das Zweikörperproblem - Die Direkte Methode der Variationsrechnung - Ausführung und Anwendung der Direkten Methode auf Sturm-Liouvillesche Rand- und Eigenwertprobleme
Studierende der Mathematik und Physik an Universitäten und Fachhochschulen
Studierende des Lehramts Mathematik und Physik
Studierende von Ingenieurwissenschaften
Prof. Dr. Hansjörg Kielhöfer, Lehrstuhl für Nichtlineare Analysis, Universität Augsburg
Caracteristici
Elementare Einführung in die Variationsrechnung