Cantitate/Preț
Produs

Vector Space Measures and Applications II: Proceedings, Dublin 1977: Lecture Notes in Mathematics, cartea 645

Editat de R.M. Aron, S. Dineen
en Limba Engleză Paperback – apr 1978

Din seria Lecture Notes in Mathematics

Preț: 48408 lei

Nou

Puncte Express: 726

Preț estimativ în valută:
9265 9548$ 7822£

Carte tipărită la comandă

Livrare economică 03-17 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540086697
ISBN-10: 3540086692
Pagini: 232
Ilustrații: X, 222 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.33 kg
Ediția:1978
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Convergence presque partout des suites de fonctions mesurables et applications.- On the completion of vector measures.- Stochastic processes and commutation relationships.- Some results with relation to the control measure problem.- On measurable and partitionable vector valued multifunctions.- Analytic evolution equations in Banach spaces.- On the radon-Nikodym-property and martingale convergence.- On the Radon-Nikodym-property, and related topics in locally convex spaces.- Relations entre les proprietes de mesurabilite universelle pour un espace topologique T et la propriete de Radon-Nikodym pour le cone positif des mesures de Radon (resp, de Baire) sur T.- Stability of tensor products of radon measures of type (?).- The strong Markov property for canonical Wiener processes.- Random linear functionals and why we study them.- Control measure problem in some classes of F-spaces.- Application des propriétés des fonctions plurisousharmoniques a un problème de mesure dans les espaces vectoriels complexes.- A maximal equality and its application in vector spaces.- Representation of analytic functionals by vector measures.- Liftings of vector measures and their applications to RNP and WRNP.- Integral representations in conuclear spaces.- Boundedness problems for finitely additive measures.- Vector measures and the ito integral.- Infinitely divisible stochastic differential equations in space-time.- Strong measurability, liftings and the Choquet-Edgar theorem.