Volume Conjecture for Knots: SpringerBriefs in Mathematical Physics, cartea 30
Autor Hitoshi Murakami, Yoshiyuki Yokotaen Limba Engleză Paperback – 27 aug 2018
In this book we start with the definition of the colored Jones polynomial by using braid presentations of knots. Then we state the volume conjecture and give a very elementary proof of the conjecture for the figure-eight knot following T. Ekholm. We then give a rough idea of the “proof”, that is, we show why we think the conjecture is true at least in the case of hyperbolic knots by showing how the summation formula for the colored Jones polynomial “looks like” the hyperbolicity equations of the knot complement.
We also describe a generalization of the volume conjecture that corresponds to a deformation of the complete hyperbolic structure of a knot complement. This generalization would relate the colored Jones polynomial of a knot to the volume and the Chern–Simons invariant of a certain representation of the fundamental group of the knot complement to the Lie group SL(2;C).
We finish by mentioning further generalizations of the volume conjecture.
Din seria SpringerBriefs in Mathematical Physics
- Preț: 142.11 lei
- Preț: 366.69 lei
- 15% Preț: 454.55 lei
- Preț: 460.89 lei
- Preț: 504.34 lei
- Preț: 429.47 lei
- Preț: 363.75 lei
- Preț: 363.75 lei
- Preț: 365.59 lei
- Preț: 429.84 lei
- Preț: 362.28 lei
- Preț: 428.21 lei
- Preț: 420.30 lei
- Preț: 426.90 lei
- 15% Preț: 446.36 lei
- Preț: 429.31 lei
- 20% Preț: 524.91 lei
- Preț: 396.26 lei
- 15% Preț: 446.67 lei
- Preț: 363.56 lei
- Preț: 460.52 lei
- Preț: 398.63 lei
- Preț: 349.10 lei
- Preț: 364.70 lei
- Preț: 397.36 lei
- 15% Preț: 446.36 lei
- Preț: 428.74 lei
- Preț: 438.94 lei
- Preț: 461.25 lei
- Preț: 461.25 lei
- Preț: 470.88 lei
- Preț: 458.47 lei
- Preț: 364.85 lei
- Preț: 425.80 lei
- Preț: 459.94 lei
- Preț: 458.47 lei
- Preț: 459.39 lei
- Preț: 361.52 lei
- Preț: 365.31 lei
- Preț: 364.85 lei
- Preț: 333.65 lei
- Preț: 333.28 lei
- 15% Preț: 446.36 lei
- Preț: 333.12 lei
- Preț: 428.37 lei
- Preț: 347.87 lei
- Preț: 397.36 lei
- Preț: 172.22 lei
Preț: 445.56 lei
Preț vechi: 524.18 lei
-15% Nou
Puncte Express: 668
Preț estimativ în valută:
85.27€ • 89.95$ • 71.27£
85.27€ • 89.95$ • 71.27£
Carte tipărită la comandă
Livrare economică 31 decembrie 24 - 14 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789811311499
ISBN-10: 9811311498
Pagini: 10
Ilustrații: IX, 120 p. 98 illus., 18 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.2 kg
Ediția:1st ed. 2018
Editura: Springer Nature Singapore
Colecția Springer
Seria SpringerBriefs in Mathematical Physics
Locul publicării:Singapore, Singapore
ISBN-10: 9811311498
Pagini: 10
Ilustrații: IX, 120 p. 98 illus., 18 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.2 kg
Ediția:1st ed. 2018
Editura: Springer Nature Singapore
Colecția Springer
Seria SpringerBriefs in Mathematical Physics
Locul publicării:Singapore, Singapore
Cuprins
1. Preliminaries (knots and links, braids, hyperbolic geometry).- 2. R-matrix, the Kashaev invariant and the colored Jones polynomimal.- 3. Volume conjecture.- 4. Triangulation of a knot complement and hyperbolicity equation.- 5. Idea of the “proof”.- 6. Representations of a knot group into SL(2;C) and their Chern-Simons invariant.- 7. Generalization of the volume conjecture.
Recenzii
“This book is a very nice account of the volume conjecture for knots, a fascinating question that relates quantum invariants to hyperbolic geometry. … The book contains a lot of explicit examples and computations. I expect it will become a classical reference in the field.” (Joan Porti, zbMath 1410.57001, 2019)
Caracteristici
Provides a short but effective introduction to quantum invariants of knots and links Provides a short but effective introduction to the geometry of a knot complement Gives the current status of the volume conjecture