Cantitate/Preț
Produs

Von Fermat bis Minkowski: Eine Vorlesung über Zahlentheorie und ihre Entwicklung

Autor W. Scharlau, H. Opolka
de Limba Germană Paperback – iun 1980

Preț: 41203 lei

Nou

Puncte Express: 618

Preț estimativ în valută:
7889 8215$ 6546£

Carte tipărită la comandă

Livrare economică 13-27 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540100867
ISBN-10: 3540100865
Pagini: 252
Ilustrații: XII, 226 S. 16 Abb.
Dimensiuni: 170 x 242 x 13 mm
Greutate: 0.36 kg
Ediția:1980
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Professional/practitioner

Cuprins

1. Die Anfänge.- 2. Fermat.- Biographisches.- Zahlentheoretische Sätze von Fermat.- Beweis des Zwei-Quadrate-Satzes.- Fermatsche (Pellsche) Gleichung.- „Fermatsches Problem“.- Literaturhinweise.- 3. Euler.- Summation einiger Reihen.- Bernoulli-Zahlen.- Trigonometrische Funktionen.- Biographisches.- Zetafunktion.- Partitionen.- Verschiedenes.- Literaturhinweise.- 4. Lagrange.- Biographisches.- Binäre quadratische Formen.- Reduktion der (positiv) definiten Formen.- Reduktion der indefiniten Formen.- Darstellbarkeit von Primzahlen.- Lösung der Fermatschen (Pellschen) Gleichung und Theorie der Kettenbrüche.- Literaturhinweise.- 5. Legendre.- Legendre-Symbol, Quadratisches Reziprozitätsgesetz.- Darstellung von Zahlen durch binäre quadratische.- Formen und quadratisches Reziprozitätsgesetz.- Biographisches.- Die Gleichung ax2+by2+cz2 = 0.- Legendres „Beweis“ des quadratischen Reziprozitätsgesetzes.- Literaturhinweise.- 6. Gauß.- Kreisteilung.- Gaußsche Summen.- Beweis des quadratischen Reziprozitätsgesetzes mit.- Kenntnis des Vorzeichens der Gaußschen Summen.- und ohne Kenntnis desselben.- Ring der ganzen Gaußschen Zahlen.- Zetafunktion zum Ring der ganzen Gaußschen Zahlen.- Ring der ganzen Zahlen im quadratischen Zahlkörper.- Zetafunktion zum Ring der ganzen Zahlen im quadratischen Zahlkörper.- Theorie der binären quadratischen Formen.- (Engere) Klassengruppe eines quadratischen Zahlkörpers.- Biographisches.- Literaturhinweise.- 7. Fourier.- Über Gott und die Welt.- Fourier-Reihen.- Summen von drei Quadraten und Laplace-Operator.- Literaturhinweise.- 8. Dirichlet.- Berechnung der Gaußschen Summen.- Primzahlen in arithmetischen Progressionen.- Nichtverschwinden der L-Reihe an der Stelle 1.- Analytische Klassenzahlformel.- Zetafunktion einesquadratischen Zahlkörpers mit Klassenzahl 1.- Zerlegungsgesetz für Primzahlen in einem quadratischen Zahlkörper mit Klassenzahl 1.- Zerlegung der Zetafunktion und Residuum.- Bemerkungen zum Fall beliebiger Klassenzahl.- Biographisches.- Literaturhinweise.- 9. Von Hermite bis Minkowski.- Bilineare Räume.- Minima positiv definiter quadratischer Formen.- Gitterpunktsatz von Minkowski.- und Anwendungen.- Biographisches.- Extreme Gitter.- Literaturhinweise.- 10. Ausblick: Reduktionstheorie.- Vorbetrachtungen über das Volumen des reduzierten Raumes und asymptotisches Wachstumsverhalten der Klassenzahl positiv definiter Formen.- Volumen des homogenen Raumes SL (n, ?) /SL (n, ?).- Volumen des reduzierten Raumes.- Literaturhinweise.- Namen- und Sachverzeichnis.