Cantitate/Preț
Produs

Wie oft können sich empirische Lorenzkurven schneiden?

Autor Frank Scherer
de Limba Germană Paperback – 12 ian 1998
Inhaltsangabe:Einleitung: Die empirische Lorenzkurve - kurz: Lorenzkurve - ist in den Wirtschafts- und Sozialwissenschaften gebräuchlich. Sie stellt graphisch dar, wie sich die Merkmalssumme eines metrischen Merkmals auf die Merkmalsträger aufteilt. Sie ist ein Polygonzug durch den mehrere Punkte im zweidimensionalen Raum verbunden werden. Der Streckenzug verläuft zwischen den Punkten (0,0) und (1,1). Die Stützstellen der Lorenzkurve werden mit Hilfe der Merkmalsausprägungen und den zugehörigen Häufigkeiten der gegebenen Beobachtungsreihen berechnet. Gang der Untersuchung: Diese Arbeit untersucht, wie oft sich zwei Lorenzkurven schneiden können. Praktische Relevanz erhält dieses Thema durch die Versuche, Lorenzkurven bezüglich geeigneter Halbordnungen anzuordnen. Schwerpunkt der Arbeit ist es, die Schnittpunktzahl nach oben abzuschätzen. Ich unterscheide hierbei den Fall, dass die Graphen gleich viele Strecken besitzen von dem Fall beliebiger Lorenzkurven. Die vorgeschlagenen Grenzen sind scharf, wie Beispiele zeigen. Abschließend wird die Schnittpunktzahl der Lorenzkurven für einige empirische Daten ermittelt und diese in Beziehung zur Zahl der Schnittpunkte empirischer Verteilungsfunktionen gesetzt. In Kapitel 2 werden dem Leser Notation und Begriffe bezüglich Lorenzkurven nahegebracht. Kapitel 3 untersucht, wann und wie die Zahl der Schnittpunkte zweier Lorenzkurven nach unten und oben abschätzbar ist. In Kapitel 4 werden Lorenzkurven mit maximal möglicher, endlicher Schnittpunktzahl konstruiert. In Kapitel 5 wird die Zahl von Schnittpunkten bei Lorenzkurven aus empirischen Daten ermittelt. Als Datenmaterial dienen Brutto-Einkommensverteilungen der Bundesrepublik Deutschland bis 1989, die Verteilung der Waldfläche auf Betriebe in einigen Bundesländern 1993 und die Verteilung landwirtschaftlicher Nutzfläche auf landwirtschaftliche Betriebe Gesamtdeutschlands 1994. Ob die Schnittpunktzahl zweier empirischer Verteilungsfunktionen die Zahl der gemeinsamen Punkte der Lorenzkurven beeinflusst, wird in Kapitel 6 untersucht. Inhaltsverzeichnis:Inhaltsverzeichnis: 1.Einleitung5 2.Einführung in Lorenzkurven6 3.Schnittpunktzahl von Lorenzkurven8 3.1Grenzen für beliebige Lorenzkurven8 3.2Grenzen für Lorenzkurven gleicher Streckenzahl10 4.Beispiele12 4.1Beispiel mit gleicher Streckenzahl12 4.2Beispiel mit ungleicher Streckenzahl21 5.Vergleich von Lorenzkurven aus der Praxis28 6.Verteilungsfunktionen und [...]
Citește tot Restrânge

Preț: 41103 lei

Nou

Puncte Express: 617

Preț estimativ în valută:
7866 8115$ 6657£

Carte disponibilă

Livrare economică 12-26 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783838606132
ISBN-10: 3838606132
Pagini: 56
Dimensiuni: 148 x 210 x 5 mm
Greutate: 0.09 kg
Editura: diplom.de