Cantitate/Preț
Produs

A = B

Autor Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger
en Limba Engleză Paperback – 2 dec 2019
This book is of interest to mathematicians and computer scientists working in finite mathematics and combinatorics. It presents a breakthrough method for analyzing complex summations. Beautifully written, the book contains practical applications as well as conceptual developments that will have applications in other areas of mathematics.

From the table of contents: * Proof Machines * Tightening the Target * The Hypergeometric Database * The Five Basic Algorithms: Sister Celine's Method, Gosper&'s Algorithm, Zeilberger's Algorithm, The WZ Phenomenon, Algorithm Hyper * Epilogue: An Operator Algebra Viewpoint * The WWW Sites and the Software (Maple and Mathematica) Each chapter contains an introduction to the subject and ends with a set of exercises.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 35094 lei  6-8 săpt.
  CRC Press – 2 dec 2019 35094 lei  6-8 săpt.
Hardback (1) 98492 lei  6-8 săpt.
  CRC Press – 1996 98492 lei  6-8 săpt.

Preț: 35094 lei

Preț vechi: 45459 lei
-23% Nou

Puncte Express: 526

Preț estimativ în valută:
6717 7001$ 5592£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367448714
ISBN-10: 0367448718
Pagini: 230
Dimensiuni: 191 x 235 x 22 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția A K Peters/CRC Press

Public țintă

Academic and Professional Practice & Development

Cuprins

I: Background 1. Proof Machines 2. Tightening the Target 3. The Hypergeometric Database II: The Five Basic Algorithms 4. Sister Celine’s Method 5. Gosper’s Algorithm 6. Zeilberger’s Algorithm 7. The WZ Phenomenon 8. Algorithm Hyper III: Epilogue 9. An Operator Algebra Viewpoint

Notă biografică

Petkovsek, Marko; Wilf, Herbert S; Zeilberger, Doron

Descriere

This book is helpful for mathematicians and computer scientists working in finite mathematics. It presents a breakthrough method for analyzing complex summations, and contains practical applications and conceptual developments having applications in other areas of mathematics.