A Combination of Geometry Theorem Proving and Nonstandard Analysis with Application to Newton’s Principia: Distinguished Dissertations
Autor Jacques Fleurioten Limba Engleză Paperback – 13 sep 2012
In A Combination of Geometry Theorem Proving and Nonstandard Analysis, Jacques Fleuriot presents a formalization of Lemmas and Propositions from the Principia using a combination of methods from geometry and nonstandard analysis. The mechanization of the procedures, which respects much of Newton's original reasoning, is developed within the theorem prover Isabelle. The application of this framework to the mechanization of elementary real analysis using nonstandard techniques is also discussed.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 633.68 lei 6-8 săpt. | |
SPRINGER LONDON – 13 sep 2012 | 633.68 lei 6-8 săpt. | |
Hardback (1) | 639.25 lei 6-8 săpt. | |
SPRINGER LONDON – 8 iun 2001 | 639.25 lei 6-8 săpt. |
Din seria Distinguished Dissertations
- 20% Preț: 290.51 lei
- 15% Preț: 645.47 lei
- 20% Preț: 654.05 lei
- 20% Preț: 647.79 lei
- 20% Preț: 994.92 lei
- 20% Preț: 648.26 lei
- 20% Preț: 328.60 lei
- 20% Preț: 641.34 lei
- 20% Preț: 328.09 lei
- 20% Preț: 325.30 lei
- 20% Preț: 926.94 lei
- 20% Preț: 639.52 lei
- 20% Preț: 640.69 lei
- 20% Preț: 603.36 lei
- 20% Preț: 637.56 lei
- 20% Preț: 643.30 lei
- 20% Preț: 640.51 lei
- 20% Preț: 640.19 lei
- 20% Preț: 325.63 lei
Preț: 633.68 lei
Preț vechi: 745.50 lei
-15% Nou
Puncte Express: 951
Preț estimativ în valută:
121.29€ • 126.14$ • 101.64£
121.29€ • 126.14$ • 101.64£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781447110415
ISBN-10: 1447110412
Pagini: 160
Ilustrații: XIII, 140 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.23 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: SPRINGER LONDON
Colecția Springer
Seria Distinguished Dissertations
Locul publicării:London, United Kingdom
ISBN-10: 1447110412
Pagini: 160
Ilustrații: XIII, 140 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.23 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: SPRINGER LONDON
Colecția Springer
Seria Distinguished Dissertations
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
1. Introduction.- 1.1 A Brief History of th e Infinitesimal.- 1.2 The Principia and its Methods.- 1.3 On Nonstandard Analysis.- 1.4 Objectives.- 1.5 Achieving our Goals.- 1.6 Organisation of this Book.- 2. Geometry Theorem Proving.- 2.1 Historical Background.- 2.2 Algebraic Techniques.- 2.3 Coordinate-Free Techniques.- 2.4 Formalizing Geometry in Isabelle.- 2.5 Concluding Remarks.- 3. Constructing the Hyperreals.- 3.1 Isabelle/HOL.- 3.2 Propertiesof an Infinitesimal Calculus.- 3.3 Internal Set Theory.- 3.4 Constructions Leading to the Reals.- 3.5 Filters and Ultrafilters.- 3.6 Ultrapower Construction of the Hyperreals.- 3.7 Structure of the Hyperreal Number Line.- 3.8 The Hypernatural Numbers.- 3.9 An Alternative Construction for the Reals.- 3.10 Related Work.- 3.11 Concluding Remarks.- 4. Infinitesimal and Analytic Geometry.- 4.1 Non-Archimedean Geometry.- 4.2 New Definitions and Relations.- 4.3 Infinitesimal Geometry Proofs.- 4.4 Verifying the Axioms of Geometry.- 4.5 Concluding Remarks.- 5. Mechanizing Newton’s Principia.- 5.1 Formalizing Newton’s Properties.- 5.2 Mechanized Propositions and Lemmas.- 5.3 Ratios of Infinitesimals.- 5.4 Case Study : Propositio Kepleriana.- 6. Nonstandard Real Analysis.- 6.1 Extending a Relation to the Hyperreals.- 6.2 Towards an Intuitive Calculus.- 6.3 Real Sequences and Series.- 6.4 Some Elementary Topology of the Reals.- 6.5 Limits and Continuity.- 6.6 Differentiation.- 6.7 On the Transfer Principle.- 6.8 Related Work and Conclusions.- 7. Conclusions.- 7.1 Geometry, Newton , and the Principia.- 7.2 Hyperreal Analysis.- 7.3 Further Work.- 7.4 Concluding Remarks.