A First Course in Real Analysis: Undergraduate Texts in Mathematics
Autor Sterling K. Berberianen Limba Engleză Hardback – 24 iun 1994
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 379.39 lei 6-8 săpt. | |
Springer – 7 sep 2012 | 379.39 lei 6-8 săpt. | |
Hardback (1) | 385.06 lei 6-8 săpt. | |
Springer – 24 iun 1994 | 385.06 lei 6-8 săpt. |
Din seria Undergraduate Texts in Mathematics
- Preț: 402.33 lei
- 17% Preț: 365.42 lei
- Preț: 426.58 lei
- Preț: 380.26 lei
- Preț: 351.54 lei
- Preț: 358.10 lei
- 13% Preț: 389.61 lei
- Preț: 257.71 lei
- 17% Preț: 395.93 lei
- Preț: 367.40 lei
- Preț: 359.48 lei
- Preț: 304.91 lei
- Preț: 370.77 lei
- 19% Preț: 400.52 lei
- Preț: 364.40 lei
- Preț: 388.49 lei
- Preț: 430.01 lei
- Preț: 398.77 lei
- Preț: 405.41 lei
- Preț: 290.80 lei
- 15% Preț: 417.73 lei
- Preț: 415.94 lei
- Preț: 298.00 lei
- 17% Preț: 362.67 lei
- Preț: 407.62 lei
- 17% Preț: 368.60 lei
- 17% Preț: 367.24 lei
- Preț: 424.14 lei
- 17% Preț: 373.59 lei
- Preț: 400.42 lei
- Preț: 432.63 lei
- Preț: 400.42 lei
- Preț: 329.94 lei
- 19% Preț: 492.82 lei
- Preț: 389.60 lei
- Preț: 383.57 lei
- 15% Preț: 512.28 lei
- Preț: 395.27 lei
- 15% Preț: 522.80 lei
- 15% Preț: 440.30 lei
- 15% Preț: 524.58 lei
- Preț: 383.57 lei
- 15% Preț: 565.74 lei
- 15% Preț: 454.15 lei
- 15% Preț: 442.89 lei
Preț: 385.06 lei
Nou
Puncte Express: 578
Preț estimativ în valută:
73.73€ • 76.77$ • 61.17£
73.73€ • 76.77$ • 61.17£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387942179
ISBN-10: 0387942173
Pagini: 240
Ilustrații: XI, 240 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.5 kg
Ediția:1994
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387942173
Pagini: 240
Ilustrații: XI, 240 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.5 kg
Ediția:1994
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
1 Axioms for the Field ? of Real Numbers.- §1.1. The field axioms.- §1.2. The order axioms.- §1.3. Bounded sets, LUB and GLB.- §1.4. The completeness axiom (existence of LUB’s).- 2 First Properties of ?.- §2.1. Dual of the completeness axiom (existence of GLB’s).- §2.2. Archimedean property.- §2.3. Bracket function.- §2.4. Density of the rationals.- §2.5. Monotone sequences.- §2.6. Theorem on nested intervals.- §2.7. Dedekind cut property.- §2.8. Square roots.- §2.9. Absolute value.- 3 Sequences of Real Numbers, Convergence.- §3.1. Bounded sequences.- §3.2. Ultimately, frequently.- §3.3. Null sequences.- §3.4. Convergent sequences.- §3.5. Subsequences, Weierstrass-Bolzano theorem.- §3.6. Cauchy’s criterion for convergence.- §3.7. limsup and liminf of a bounded sequence.- 4 Special Subsets of ?.- §4.1. Intervals.- §4.2. Closed sets.- §4.3. Open sets, neighborhoods.- §4.4. Finite and infinite sets.- §4.5. Heine-Borel covering theorem.- 5 Continuity.- §5.1. Functions, direct images, inverse images.- §5.2. Continuity at a point.- §5.3. Algebra of continuity.- §5.4. Continuous functions.- §5.5. One-sided continuity.- §5.6. Composition.- 6 Continuous Functions on an Interval.- §6.1. Intermediate value theorem.- §6.2. n’th roots.- §6.3. Continuous functions on a closed interval.- §6.4. Monotonic continuous functions.- §6.5. Inverse function theorem.- §6.6. Uniform continuity.- 7 Limits of Functions.- §7.1. Deleted neighborhoods.- §7.2. Limits.- §7.3. Limits and continuity.- §7.4. ?,?characterization of limits.- §7.5. Algebra of limits.- 8 Derivatives.- §8.1. Differentiability.- §8.2. Algebra of derivatives.- §8.3. Composition (Chain Rule).- §8.4. Local max and min.- §8.5. Mean value theorem.- 9 Riemann Integral.- §9.1. Upper and lower integrals: the machinery.- §9.2. First properties of upper and lower integrals.- §9.3. Indefinite upper and lower integrals.- §9.4. Riemann-integrable functions.- §9.5. An application: log and exp.- §9.6. Piecewise pleasant functions.- §9.7.Darboux’s theorem.- §9.8. The integral as a limit of Riemann sums.- 10 Infinite Series.- §10.1. Infinite series: convergence, divergence.- §10.2. Algebra of convergence.- §10.3. Positive-term series.- §10.4. Absolute convergence.- 11 Beyond the Riemann Integral.- §11.1 Negligible sets.- §11.2 Absolutely continuous functions.- §11.3 The uniqueness theorem.- §11.4 Lebesgue’s criterion for Riemann-integrability.- §11.5 Lebesgue-integrable functions.- §A.1 Proofs, logical shorthand.- §A.2 Set notations.- §A.3 Functions.- §A.4 Integers.- Index of Notations.