Adaptive and Multilevel Metaheuristics: Studies in Computational Intelligence, cartea 136
Editat de Carlos Cotta, Marc Sevaux, Kenneth Sörensenen Limba Engleză Hardback – 30 mai 2008
These mechanisms can involve different aspects of the algorithm, such as for example, self-adjusting the parameters, self-adapting the functioning of internal components, evolving search strategies, etc.
Recently, the idea of hyperheuristics, i.e., using a metaheuristic layer for adapting the search by selectively using different low-level heuristics, has also been gaining popularity. This volume presents recent advances in the area of adaptativeness in metaheuristic optimization, including up-to-date reviews of hyperheuristics and self-adaptation in evolutionary algorithms, as well as cutting edge works on adaptive, self-adaptive and multilevel metaheuristics, with application to both combinatorial and continuous optimization.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 944.36 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 28 oct 2010 | 944.36 lei 6-8 săpt. | |
Hardback (1) | 794.43 lei 38-44 zile | |
Springer Berlin, Heidelberg – 30 mai 2008 | 794.43 lei 38-44 zile |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 20% Preț: 1158.26 lei
- 20% Preț: 986.66 lei
- 20% Preț: 1452.76 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1112.30 lei
- 20% Preț: 565.38 lei
- 20% Preț: 649.28 lei
- 20% Preț: 1047.73 lei
- 20% Preț: 1578.96 lei
- 20% Preț: 643.50 lei
- 20% Preț: 657.49 lei
- 20% Preț: 993.28 lei
- 20% Preț: 990.80 lei
- 20% Preț: 989.96 lei
- 20% Preț: 1165.69 lei
- 20% Preț: 1444.52 lei
- 20% Preț: 1041.96 lei
- 20% Preț: 1047.73 lei
- 20% Preț: 1046.06 lei
- 18% Preț: 2500.50 lei
- 20% Preț: 989.13 lei
- 20% Preț: 1165.69 lei
- 20% Preț: 1164.05 lei
- 20% Preț: 1042.79 lei
- 20% Preț: 1460.19 lei
- 18% Preț: 1403.52 lei
- 18% Preț: 1124.92 lei
- 20% Preț: 1039.47 lei
- 20% Preț: 1008.11 lei
- 20% Preț: 1045.25 lei
- 20% Preț: 1275.42 lei
- 20% Preț: 1040.32 lei
- 20% Preț: 988.32 lei
- 20% Preț: 1169.79 lei
- 20% Preț: 1162.37 lei
- 20% Preț: 1059.26 lei
- 20% Preț: 1164.05 lei
- 20% Preț: 1166.52 lei
- 20% Preț: 1459.38 lei
- 18% Preț: 1005.74 lei
- 20% Preț: 997.38 lei
- 20% Preț: 1055.94 lei
- 20% Preț: 1284.47 lei
- 20% Preț: 994.08 lei
- 20% Preț: 1048.72 lei
- 20% Preț: 1066.02 lei
- 20% Preț: 943.78 lei
- 20% Preț: 1173.10 lei
- 20% Preț: 1457.72 lei
Preț: 794.43 lei
Preț vechi: 1045.30 lei
-24% Nou
Puncte Express: 1192
Preț estimativ în valută:
152.09€ • 158.69$ • 127.49£
152.09€ • 158.69$ • 127.49£
Carte tipărită la comandă
Livrare economică 08-14 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540794370
ISBN-10: 3540794379
Pagini: 265
Ilustrații: XV, 275 p.
Dimensiuni: 156 x 234 x 20 mm
Greutate: 0.59 kg
Ediția:2008
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540794379
Pagini: 265
Ilustrații: XV, 275 p.
Dimensiuni: 156 x 234 x 20 mm
Greutate: 0.59 kg
Ediția:2008
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Reviews of the Field.- Hyperheuristics: Recent Developments.- Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation.- New Techniques and Applications.- An Efficient Hyperheuristic for Strip-Packing Problems.- Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters.- RASH: A Self-adaptive Random Search Method.- Market Based Allocation of Transportation Orders to Vehicles in Adaptive Multi-objective Vehicle Routing.- A Simple Evolutionary Algorithm with Self-adaptation for Multi-objective Nurse Scheduling.- Individual Evolution as an Adaptive Strategy for Photogrammetric Network Design.- Adaptive Estimation of Distribution Algorithms.- Initialization and Displacement of the Particles in TRIBES, a Parameter-Free Particle Swarm Optimization Algorithm.- Evolution of Descent Directions.- “Multiple Neighbourhood” Search in Commercial VRP Packages: Evolving Towards Self-Adaptive Methods.- Automated Parameterisation of a Metaheuristic for the Orienteering Problem.
Textul de pe ultima copertă
One of the keystones in practical metaheuristic problem-solving is the fact that tuning the optimization technique to the problem under consideration is crucial for achieving top performance. This tuning/customization is usually in the hands of the algorithm designer, and despite some methodological attempts, it largely remains a scientific art. Transferring a part of this customization effort to the algorithm itself -endowing it with smart mechanisms to self-adapt to the problem- has been a long pursued goal in the field of metaheuristics.
These mechanisms can involve different aspects of the algorithm, such as for example, self-adjusting the parameters, self-adapting the functioning of internal components, evolving search strategies, etc.
Recently, the idea of hyperheuristics, i.e., using a metaheuristic layer for adapting the search by selectively using different low-level heuristics, has also been gaining popularity. This volume presents recent advances in the area of adaptativeness in metaheuristic optimization, including up-to-date reviews of hyperheuristics and self-adaptation in evolutionary algorithms, as well as cutting edge works on adaptive, self-adaptive and multilevel metaheuristics, with application to both combinatorial and continuous optimization.
These mechanisms can involve different aspects of the algorithm, such as for example, self-adjusting the parameters, self-adapting the functioning of internal components, evolving search strategies, etc.
Recently, the idea of hyperheuristics, i.e., using a metaheuristic layer for adapting the search by selectively using different low-level heuristics, has also been gaining popularity. This volume presents recent advances in the area of adaptativeness in metaheuristic optimization, including up-to-date reviews of hyperheuristics and self-adaptation in evolutionary algorithms, as well as cutting edge works on adaptive, self-adaptive and multilevel metaheuristics, with application to both combinatorial and continuous optimization.
Caracteristici
Presents recent results in Adaptive and Multilevel Metaheuristics