Advanced Analytics and Learning on Temporal Data: 4th ECML PKDD Workshop, AALTD 2019, Würzburg, Germany, September 20, 2019, Revised Selected Papers: Lecture Notes in Computer Science, cartea 11986
Editat de Vincent Lemaire, Simon Malinowski, Anthony Bagnall, Alexis Bondu, Thomas Guyet, Romain Tavenarden Limba Engleză Paperback – 23 ian 2020
The 7 full papers presented together with 9 poster papers were carefully reviewed and selected from 31 submissions. The papers cover topics such as temporal data clustering; classification of univariate and multivariate time series; early classification of temporal data; deep learning and learning representations for temporal data; modeling temporal dependencies; advanced forecasting and prediction models; space-temporal statistical analysis; functional data analysis methods; temporal data streams; interpretable time-series analysis methods; dimensionality reduction, sparsity, algorithmic complexity and big data challenge; and bio-informatics, medical, energy consumption, on temporal data.
Din seria Lecture Notes in Computer Science
- 20% Preț: 1053.72 lei
- 20% Preț: 337.82 lei
- 20% Preț: 339.43 lei
- 20% Preț: 449.99 lei
- 20% Preț: 238.01 lei
- 20% Preț: 337.82 lei
- 20% Preț: 438.69 lei
- Preț: 446.28 lei
- 20% Preț: 341.10 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 640.52 lei
- 17% Preț: 427.22 lei
- 20% Preț: 650.20 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1067.33 lei
- 20% Preț: 587.17 lei
- Preț: 378.43 lei
- 20% Preț: 334.54 lei
- 15% Preț: 435.36 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1404.34 lei
- 20% Preț: 1016.88 lei
- 20% Preț: 575.04 lei
- 20% Preț: 575.48 lei
- 20% Preț: 579.12 lei
- 20% Preț: 757.61 lei
- 15% Preț: 576.20 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 350.92 lei
- 20% Preț: 581.57 lei
- Preț: 407.85 lei
- 20% Preț: 592.06 lei
- 20% Preț: 757.61 lei
- 20% Preț: 819.86 lei
- 20% Preț: 649.49 lei
- 20% Preț: 347.62 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 308.40 lei
Preț vechi: 385.50 lei
-20% Nou
Puncte Express: 463
Preț estimativ în valută:
59.06€ • 60.85$ • 49.48£
59.06€ • 60.85$ • 49.48£
Carte tipărită la comandă
Livrare economică 18-24 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030390976
ISBN-10: 3030390977
Pagini: 229
Ilustrații: X, 229 p. 109 illus., 90 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.34 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3030390977
Pagini: 229
Ilustrații: X, 229 p. 109 illus., 90 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.34 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Robust Functional Regression for Outlier Detection.- Transform Learning Based Function Approximation for Regression and Forecasting.- Proactive Fiber Break Detection based on Quaternion Time Series and Automatic Variable Selection from Relational Data.- A fully automated periodicity detection in time series.- Conditional Forecasting of Water Level Time Series with RNNs.- Challenges and Limitations in Clustering Blood Donor Hemoglobin Trajectories.- Localized Random Shapelets.- Feature-Based Gait Pattern Classification for a Robotic Walking Frame.- How to detect novelty in textual data streams? A comparative study of existing methods.- Seq2VAR: multivariate time series representation with relational neural networks and linear autoregressive model.- Modelling Patient Sequences for Rare Disease Detection with Semi-supervised Generative Adversarial Nets.- Extended Kalman Filter for Large Scale Vessels Trajectory Tracking in Distributed Stream Processing Systems.- Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets using Deep Learning.- Learning Stochastic Dynamical Systems via Bridge Sampling.- Quantifying Quality of Actions Using Wearable Sensor.- An Initial Study on Adapting DTW at Individual Query for Electrocardiogram Analysis.